
EEMAGINE - MEDICAL IMAGING SOLUTIONS GMBH

Functional Imaging based on swLORETA
and phase synchronization

Author:

Ernesto Palmero Soler

Supervisor:

Prof. Dr. Jens Haueisen

SUBMITTED IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THEDEGREE OF

DOCTOR IN SCIENCE

May 18, 2010





To my family, especially

To my parents, Lourdes and Emilio

To my grandparents, Margarita and Angelo

To my angel of every day, Esther

i





Acknowledgements

In my experience, a PhD work is not possible without the help of many people, some of whom are not

even aware of their contribution. For that reason and takingadvantage of the synchronization between

my brain and my heart I would like to thank to:

my colleagues at EEMAGINE for their kindness and support, especially to Jacob Kanev and Christoph

Demmer who always have a word of comfort and understanding.

my friend Frank Zanow. I really enjoyed to work and talk with him and, in general, he and his family

made the distance to my homeland shorter.

to my first supervisor in neuroscience research and personalfriend Nelson Trujillo, for his invaluable

comments and support during more that 7 years, for clearing up the clouds during obscure times.

especially, I thank my friend Eduardo Aubert who has shared his knowledge and wisdom and has

been always there for me.

Particularly fruitful has been the collaboration with my friend Kevin Dolan who introduced me to

the art of C++ programming and signal processing and with whom I have spend many hours enjoying

good movies and food.

The time spend with my former colleagues at the Research Center Juelich Dr. Jurgen Dammers and

Andrea Muren was a very useful one. Specially, Andrea Muren’s ability with the MEG system was of

invaluable help.

I greatly valuable Prof. Dr. Jens Haueisen for supervising my work.

My whole-life friend and teacher Jesus Novoa Blanco who introduced me to science when I was still

a kid and forever became a beacon during dark hours and a constant memory in my mind.

To my family, specially my brother Emilio, who have educated, sheltered and supported me in all

aspects of my life.

To my parents Lourdes and Emilio not only for the obvious reason of giving me the Life, but also

for giving me the best of their life and supporting me even when I was an stubborn child: this thesis is

dedicated to them.

I breathless thank to my grandparents Margarita and Angelo for their care and great advice which

iii



have helped me throughout the worst moments of my life.

I would like to thanks Esther Alonso for helping review this manuscript.

iv



Abstract

In order to overcome some of the limitations of the distributed inverse solution algorithms, a new algo-

rithm named Standardized Weighted Low Resolution Tomography (swLORETA) was developed. The

swLORETA algorithm incorporates a singular value decomposition (SVD) based lead field weighting

to compensate the tendency of the linear inverse proceduresin general, and sLORETA in particular, to

reconstruct the sources close to the location of the sensors. It also contributes to decrease the sensitivity

of the solution to the presence of noise. An extension of the swLORETA to the time-frequency domain

was also developed by applying the Hilbert transform to the time series obtained with the swLORETA.

Finally, the coherence and phase synchronization imaging methods were introduced to assess functional

connectivity within the brain.

The tomographic properties of swLORETA and sLORETA were compared using both simulated

and real data. In the simulation studies, the reconstruction of single and multiple current dipoles was

simulated varying their position and orientation across the source space and taking into account the

presence of noise. The real data was obtained from healthy subjects who performed a classical spatial

attention experiment. The tests performed demonstrated that the resulting algorithm is not only efficient

but also accurate as demonstrated by the analysis of a spatial attention experiment.
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Zusammenfassung

In dieser Arbeit wird ein neuer Algorithmus, Standardized Weighted Low Resolution Tomography

(swLORETA) genannt, vorgestellt, der einige der Beschränkungen von verteilten Lösungen für eine

Quellenlokalisation beseitigt.

Der swLORETA-Algorithmus enthält eine Wichtung für das Leitungsfeld, das auf eine singular

value decomposition (SVD) basiert. Damit wird die Tendenz der linearen Quellenlokalisation im Allge-

meinen und von sLORETA im Besonderen, die Quellen zu nahe zu den Sensorpositionen zu lokalisieren,

kompensiert. Die veränderte Wichtung trägt auch zu einer Abnahme der Rausch-Empfindlichkeit der

Lösung bei. Eine Erweiterung von swLORETA in den Zeit-Frequenz-Bereich wurde entwickelt. Dies

geschah durch Anwendung der Hilbert-Transformation auf Zeitreihen, die durch swLORETA erzeugt

wurden. Schlieβlich wurden Bildgebungsmethoden für die Kohärenz und die Phasen-Synchronisation

eingeführt, um die funktionalen Verbindungen im Gehirn zu untersuchen.

Die tomographischen Eigenschaften von swLORETA und sLORETA wurden mit Hilfe simulierter

und realer Daten verglichen. In den Simulations-Studien wurde die Rekonstruktion von einzelnen wie

multiplen Dipolen bei Berücksichtigung von Rauschen simuliert, wobei sowohl die Position als auch

die Orientierung variiert wurde. Die realen Daten wurden von gesunden Probanden aufgenommen, die

ein klassisches räumliches Aufmerksamkeits-Experiment ausführten. Die Testergebnisse dieses Exper-

iments zeigen, dass der Algorithmus nicht nur effizient arbeitet, sondern auch genaue Resultate zur

Analyse derartiger Experimente liefert.
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1
General Introduction

I have been impressed with the urgency of

doing. Knowing is not enough; we must

apply. Being willing is not enough; we must

do.

Leonardo da Vinci

In 1875, the Liverpool physician, Dr. Richard Caton recorded for the first time electrical brain

activity in vivisected rabbits and monkeys. Half a century later, in 1924, the German physiologist and

psychiatrist Hans Berger became the first person to record such signals from the human brain. A whole

new era was then open for the neurosciences as the electroencephalogram (EEG) gave the possibility

to obtain objective information about brain functioning ina relatively easy, non expensive and, more

importantly, non invasive way.

It is not fully understood yet how the EEG is produced. The most accepted hypothesis is that it re-

flects the summed activity of post-synaptic currents (Paul and Ramesh, 2006). Thus, an action potential

in a pre-synaptic axon causes the release of a neurotransmitter into the synapse. This neurotransmitter

diffuses across the synaptic cleft and bounds to the receptors of a post-synaptic dendrite. As a conse-

quence, there is a flow of ions into or out of the dendrite, which in turn results in compensatory currents

in the extra cellular space. It is believed that these extracellular currents are responsible for the scalp

EEG voltages (Paul and Ramesh, 2006). It should be noted thatthe EEG does not give information

about a single neuron. Rather, it gives information about several neurons which fire synchronously and

have similar spatial orientation, radial to the scalp. Consequently, the EEG mostly registers the activity

of apical dendrites in the cortex that have a parallel, radial arrangement.

The EEG is not the only imaging technique that assists neuroscientists in the the study of brain

functions. As the neuronal electrical activity can be measured on the scalp, it is also possible to measure

the magnetic field associated to it. This was done for the firsttime in 1968 by the Canadian born physics

David Cohen. Since its introduction, the magnetoencephalogram (MEG) systems have experienced a

fast growth. From the first equipments, which used only a few detectors, today there are dewars helmet-

shaped which contain as many as≈ 300 sensors that cover most of the head. Those sensors were initially

1



2 Chapter 1. General Introduction

copper induction coils, today they are extremely sensitivesuperconducting quantum interference devices

that can cope with both the weakness of the signal and the strength of the competing environmental noise.

Compared to other techniques such as positron emission tomography (PET) and functional magnetic

image (fMRI) one of the main advantages of EEG and MEG as research and clinical tools is their

temporal resolution, which is in the order of milliseconds.Unfortunately, they both have also a major

drawback: their spatial resolution. In other words, it is impossible to know with certainty which brain

area has generated the signal measured at the scalp. This is due to the fact that the cerebrospinal fluid,

the skull and the scalp placed between the brain current sources and the sensors smear the current flow

before it reaches the scalp. During the last years, many researchers have tried to overcome this limitation

by developing methods that solve what has been called the biomagnetic inverse problem (Ebersole and

Wade, 1990; Caplan et al., 2001). The main difficulty to overcome in order to develop such methods is

determined by the physics nature of the problem: the measurements do not contain enough information

about the generators as proven by Helmholtz in 1853 (Helmholtz, 1853). This limitation, termed the non-

uniqueness of the inverse problem, prescribed the existence of an infinite number of “correct” answers.

In order to limit the amount of “correct” answers, it is necessary to introduce models that incorporate

additional information or constrains about the anatomicaland mathematical properties of the current

inside the head. By using different “priors” information several aspects of the intracranial current can

be modelled and thus different types of inverse solutions methods, i.e. dipolar methods, distributed

etc.(Hämäläinen and Ilmoniemi, 1994) can be developed.

Despite the recent development of algorithms that have zerolocalization error under ideal conditions

(Pascual-Marqui, 2002), there are still two main problems that seriously affect linear inverse solution

algorithms: the tendency to underestimate deep generatorsin favor of cortical ones and the instability

of the solution in the presence of noise. The reason for the first of these difficulties rests on the fact that

electric and magnetic fields are inversely related to the square of the distance. Consequently, the fields

generated by deep sources decay too fast and produce weak signals at sensor locations. The second

difficulty is particularly important since EEG/MEG signal has a low SNR.

In this work, it is proposed a modification of the Standardized Low Resolution Electromagnetic

Tomography (sLORETA) (Pascual-Marqui, 2002) named Standardized Weigthed Low Resolution Elec-

tromagnetic Tomography (swLORETA). It will be shown that compared to sLORETA, swLORETA has

better tomography properties in the presence of noise and, at the same time, has less bias toward super-

ficial sources. This suggests that EEG/MEG may contains the necessary information to estimate deep

sources, which supports the claims of some authors in this field (Ioannides et al., 1995; Taylor et al.,

1999).

Additionally, the new algorithm will be extended to characterize the EEG/MEG signal not only in

terms of the anatomical localization of the sources within the brain but also in terms of its dynamic

frequency content. As it has been shown that several brain rhythms can be associated to different normal

and pathological states (Bhattacharya, 2001; Strelets et al., 2006; Whittington, 2008; D. Moretti, 2009)

it is important to find the neural populations responsible oftheir generation to fully understand their

nature.
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This manuscript is organized as follows. In chapter (2) an introduction to the EEG/MEG is provided.

In chapter (3) the newly developed swLORETA inverse solution method is introduced. In chapter (4)

its formulation is extended to the time-frequency space. This will allow characterizing the EEG/MEG

generators also in terms of their frequency dynamics. In chapter (5) the time-frequency extension will be

used to characterize the large scale integration necessaryfor the emergency of a unified cognitive brain

response. Conclusions and outlook are given in chapter (6).Two appendixes (A) and (B) give additional

mathematical details about the Tikhonov regularization scheme and the Hilbert transform, respectively.

Some of the methods presented in this work have been published and are part of a software package

named ASA (Advance Source Analysishttp://www.ant-neuro.com/products/asa) widely

used for the neuroscientists community.

http://www.ant-neuro.com/products/asa




2
The Inverse Problem

The work of James Clerk Maxwell changed

the world forever.

Albert Einstein

2.1 Introduction

Neuroscientists are interested in explaining how the brainis able to orchestrate the cognitive life. In other

words, how does it transforms an input signal, such as a visual stimulus, into a flow of concatenated,

meaningful perceptions? One of the main aspects of such a quest is determining which brain areas

generate the EEG/MEG signal recorded on the scalp in response to a given stimulus. In other words, it is

important to find out the distribution of cerebral current sources that best explain the scalp measurements.

Unfortunately, this is a difficult task and so it has been called the inverse problem. In the following

paragraphs, the main difficulties that the inverse problem poses will be explained.

First of all, the inverse problem is ill posed because it doesnot have a unique solution: radically

different source configurations may explain the data equally well. This is due to the existence of silent

sources that cannot be measured on the scalp and to the principle of superposition, which states that when

two or more sources are active simultaneously their measured field is the vector sum of each individual

field. Additionally, the inverse problem is highly underdetermined because there is a limited amount of

sensors/electrodes that can be placed on the scalp and numerically instable because of the presence of

noise.

To limit the space of possible solutions, additional information or constrains about the physical and

mathematical properties of the current inside the head haveto be introduced. Dipolar methods, for

example, handle the many-to-one nature of the problem by characterizing the sources in terms of a

limited number of current dipoles that are fitted to the data using some measure of the reconstruction

error. Although these methods have been widely used in epilepsy (Lantz et al., 1996; Ebersole and

Wade, 1990), and somatosensory research (Hoechstetter et al., 2001; Baumgartner et al., 1998) there

is a growing evidence that they may fail during complex cognitive tasks. In such situations, a wide

5
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spread neural networks at the base of the EEG/MEG generationseems a more plausible hypothesis.

For this reason, the distributed inverse methods will be themain focus of this thesis. These methods,

as their general name indicates, assume the existence of a large number of dipolar EEG/MEG sources

distributed over the entire brain. To estimate a unique solution they also introduce additional information

about some aspect of the primary current density (PCD) using, for example, the Bayesian framework or

equivalent via a regularization scheme (Tikhonov and Arsenin, 1997; Tarantola, 1987; Mackay, 1992).

The first step towards the solution of the inverse problem is to find a model that explain how the

current flow is related to the electrical potential on the scalp or the magnetic field measured above

the head. This task is often referred as the bioelectromagnetic forward problem. This chapter will be

dedicated to review the forward problem and will provide themathematical framework for the solution

of the inverse problem.

2.2 Quasistatic Approximation of Maxwell’s Equations

The Maxwell’s equations and the continuity equation (∇ · J = −∂ρ/∂t J andρ are the total current

density and the charge density, respectively) can be used tocalculate the electric fieldE and the magnetic

inductionB for a bioelectromagnetic signal, e.g. an electric generator in the brain, if the conductivityρ

and the source generators are known. Usually, for applications in biomagnetism, Maxwell’s equations

are considerably simplified by doing two approximations.

The first approximation concerns the magnetic permeabilityµ of the different tissues in the head,

which is approximately set to the permeability of free space, i.e, µ = µ0 = 4π × 107 H/m. Thereby,

Maxwell’s equations take the form:

∇ ·D = ρ (2.1)

∇× E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)

∇× H = J +
∂D

∂t
. (2.4)

If the material are consider to be linear and isotropic,D andB are defined by:

B = µH (2.5)

D = ǫE (2.6)

whereǫ is the permittivity of the medium.

In a passive non-magnetic medium, the current density vector J consists of an ohmic volume current

jv = σE and a primary currentjp (see subsection 2.3). By substituting equation (2.5) and (2.6) into

(2.4) it is obtained:
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∇× B = µ0

(

jp + σE + ǫ
∂E

∂t

)

. (2.7)

If the bioelectromagnetic phenomena is considered at frequencyw (typically in the< 1000Hz

range), the electrical field can be written as:

E = E0 exp(iwt),

and equation (2.7) can be restated as:

∇× B = µ0 (jp + σE0 exp(iwt) + iǫwE0 exp(iwt)) . (2.8)

The second approximation, the so called quasistatic approximation, implies that the∂E/∂t and

∂B/∂t are ignored as source terms and only static fields forE andB are considered. Note that the time

derivate term in equation (2.7) should be smaller than the ohmic current for this approximation to be

valid: ǫ|∂E/∂t| ≪ |σE. Equation (2.8) shows that this is the case providedǫw ≪ σ. Using an average

conductivity ofσ = 0.3Ω−1m−1 for brain tissue,ǫ = 105ǫ0 and a frequency ofw = 2πf = 200πs−1

thenǫw/σ ≈ 1.8 × 10−3 ≪ 1.

In addition, it is possible to demonstrate that the contribution of ∂B/∂t to E in equation (2.2) is

small too. From equation (2.8) and considering that∇× (∇× E) = −∂/∂t(∇×B) it is obtained,

∇× (∇× E) = −iwµ0 (σ + iwǫ)E. (2.9)

Solutions to this equation have spatial changes on the characteristic length scale (Hämäläinen et al.,

1993):

λc = |wµ0σ(1 + iwǫ/σ)|−1/2. (2.10)

With the parameters given above it is obtainedλc = 65m, which is much larger than the diameter

of the head. This implies that the contribution of∂B/∂t to E is small.

In summary, the field do vary in time, but the time dependence adds no distinct source term to the

right side of equation (2.2) and (2.4). Therefore, we can simplify Maxwell’s equation into the quasistatic

form:

∇ ·D = ρ (2.11)

∇× E = 0 (2.12)

∇ · B = 0 (2.13)

∇×H = J (2.14)

Since∇ × E = 0, the electric field can be expressed with a scalar potentialE = −∇V , with V

being the electric potential.
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2.3 Primary and Secondary Current

In the study of the bioelectromagnetic fields, the current density J(r) at each positionr is usually

split into two contributions: the intracellular current flow and its accompanying extracellular current

(Hämäläinen et al., 1993; Paul and Ramesh, 2006). This intracellular current flow is the result of the

macroscopic electric field that acts on the charges carriersin the surrounding tissues giving the so-called

volume currentjv. All other contributions to the current densityJ are referred to as the primary current

jp. Since they represent the active origin of the neuromagnetic field as the primary source, the volume

or return current is passive. If the cellular level details are neglected and the whole head is regarded as a

homogeneous conductor, then the current density can be written as:

J(r) = jp(r) + σ(r)E(r) = jp(r) + σ(r)∇V (r) (2.15)

Splitting the current density in this way, illustrates the fact that the neural activity gives rise to pri-

mary current mainly in a given cell or its close surroundingswhereas the volume current flows passively

everywhere in the medium. By finding the primary current(s),the active brain sources can be located.

2.4 Forward Problem

Bioelectromagnetic fields are caused by electric currents in conducting body tissues (e.g the brain, the

heart or muscles). The computation of the magnetic field given the electric sources details (i.e., magni-

tude and position relative to the detector) is often referred to as the bioelectromagnetic forward problem.

Using the above equations, the expression for calculating electrical potentialV and the magnetic induc-

tion B at a pointr due to a current densityJ existing atr′ can be derived. Such equations are referred

to as the Bio-Savart law or the continuous counterpart of theAmpére-Laplace law (Landau and Lifshitz,

1962)and they provide solutions for the bioelectromagnetic forward problem,

B(r) =
µ0

4π

ˆ

J(r′) ×R

R3
d3r′ (2.16)

V (r) =
1

4πσ

ˆ

J(r′) ·R
R3

d3r′ (2.17)

whereR = r− r′ andR = ‖r− r′‖.

Equation (2.16) and (2.17) are derived from Maxwell’s equation (2.13) and (2.14) under the qua-

sistatic approximation. With a few simplifications (Hämäläinen et al., 1993) and under the assumption

that the current density atr′ approaches zero sufficiently fast whenr′ goes to infinity, it can be obtained:

B(r) =
µ0

4π

ˆ ∇′ × J(r′)

R3
d3r′ (2.18)

With (2.15) and the identity∇× (σ∇ · V ) = ∇σ ×∇V inserted in equation (2.18) then:
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B(r) =
µ0

4π

(
ˆ ∇′ × jp(r′)

R3
d3r′ −

ˆ ∇′σ ×∇′V

R3
d3r′

)

(2.19)

While the first term of equation (2.19) is the direct contribution of jp, the second term is due tojv.

Note that there is no contribution from the second term, in the case of an infinite homogeneous conductor

(∇′σ = 0). With the identity∇σ×∇V = −∇× (V∇·σ) and a comparison of equations (2.16), (2.18)

and (2.19) it is obtained:

B(r) =
µ0

4π

ˆ

(

jp + V∇′ · σ
)

× R

R3
d3r′ (2.20)

Because the source of the magnetic field is the total current densityJ, both jp andσE contribute

to B. However, in equation (2.19)σE is replaced by an equivalent fictitious currentV∇ · σ which in

general has no direct physical meaning (Hämäläinen et al., 1993). By taking the divergence of (2.14)

and (2.15) it is obtained:

∇ · (σ∇ · V ) = ∇ · jp (2.21)

Under the appropriate constraints, a solution forV is possible (Hämäläinen et al., 1993). IfV is

known, thenB can be calculated directly from equation (2.20).

2.5 Piecewise Homogeneous

If the conducting medium is considered as a piecewise homogeneous conductor, then∇σ is non-zero

only at the boundaries and it is possible to expand the secondterm in equation (2.20) as a sum of surface

integrals over the boundaries of all the discontinuities ofσ (Geselowitz, 1970; Hämäläinen et al., 1993).

Bv(r) = −µ0

4π

n
∑

j=1

(

σoutj − σinj
)

ˆ

V (r′) n̂j · R
R3

dS′

j (2.22)

whereσinj andσoutj are the conductivities inside and outside the conducting object of the surfaceSj,

n̂ is an outward unit vector normal to the surfaceSj , anddSj a surface element. Analogous to equation

(2.22), the electrical potentialV v is given by (Geselowitz, 1967):

V v(r) = − 1

4πσ

n
∑

j=1

(

σoutj − σinj
)

ˆ

V (r′) n̂j ·R
R3

dS′

j (2.23)

whereσ denotes the electrical conductivity of the medium surrounding r.

In the calculation of the magnetic field described in equation (2.22), the volume currents can be

replaced by an equivalent surface current distribution(σinj − σoutj )V (r′)n̂j(r
′) on the boundaries of

Sj and are often termed as ”secondary currents”. The above expressions show how secondary sources

contribute to the magnetic field and to the electrical potential. The fact that the direction of secondary

currents is perpendicular to the boundary between media of different conductivities, explains why the
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contribution to the field is only tangential to the underlaying surface and hence the radial component of

the magnetic field is not affected by secondary currents. Given a spherically symmetric conductor, the

corresponding secondary sources are distributed across the spherical surface with the current pointing

everywhere in the radial direction. The field is consequently everywhere tangential to the sphere and

hence measurements to the component of the fields that are normal to the surface provide information

about the primary source alone (Hämäläinen et al., 1993).

2.6 The Equivalent Current Dipole Model

The Equivalent Current Dipole Model (ECD) can be used as a simple model to describe the relationship

between neural activity and the generated electrical and magnetic field. It is used to approximate the

flow of electrical current in a small area of interest. For a single current dipoleQ , the map of the radial

magnetic fieldBr has one maximum and one minimum. The dipole, which lies halfway between the

extrema, can be thought of as a short current elementI, with the lengthl and negligible cross-section.

This vector is fully characterized by its position and orientation in space. The dipole momentQ, is

defined asQ = I · l, with the units Am. A typical strength of a dipole, caused by synchronous activity

of probably tens of thousands of neurons, is10 nAm. If current dipole model is used to describe the

electrical properties of biological sources, then it has tobe taken into account that the description is only

adequate when a small region of active tissue, i.e. where thelargest linear dimension of the region is

much smaller than its distance to the measuring point, is considered.

In the previous section, it was shown that the magnetic induction B and the electrical potentialV

are given by equations (2.16) and (2.17).

Considering a more general case with a distribution of primary current density (PCD)jp over a

certain brain volume, a current dipole can be thought of as a concentration ofjp(r) to a single pointrQ:

jp(r) = Qδ(r − rQ) (2.24)

whereδ(r − rQ) is the Dirac delta function.

The integral of the time-delayed Dirac’s delta function is given by:

ˆ +∞

−∞

f(x)δ(x − x0)dx = f(x0) (2.25)

By using equations (2.24) and (2.16) the resulting magneticfield B for the primary current density

generated by a dipolar source is given by the well-known Biot-Savart law:

B(r) =
µ0

4π

Q(rQ) × RQ

R3
Q

(2.26)

whereRQ = r−rQ andRQ = ‖r − rQ‖. VectorsrQ andr represent the position where the current

dipoleQ is located and the point where the magnetic field is evaluated, respectively. A similar relation

can be found for the electrical potentialV using equation (2.17).
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Since a point like source is magnetically silent (no magnetic signals is produced) it is sometimes

convenient to considerQ as an infinitesimal line element (ILE) of currentI pumped from a sink atr1 to

a sourcer2 with a very small source-sink separation.

A single post-synaptic activity at a dendrite of a pyramidalcell has typically a dipole strength of

aboutQ ≈ 3 × 10−13 Am (Williamson and Kaufmann, 1990). Thus, for a single pyramidal cell, which

may be4 cm from a detector and using equation (2.24), the above dipole strength will produce such

a weak magnetic field (≈ 2 × 10−17 T) that it is not detectable outside the head. But since there

are approximately105 pyramidal cells permm2 of cortex with hundreds or thousands of synapses per

neuron, the resulting magnetic field can be detected. Assuming thatn current dipoles are operating

simultaneously and pointing in the same direction the magnetic field B can be expressed by the vector

sum of all single fields:

B = B1 + B2 + · · · + Bn (2.27)

A magnetic field of100 fT, which is about the order of a typical response to a stimulation, requires

more than5000 neurons simultaneously active. If the locations of the active current dipoles are close

together, say within a few cubic millimeters, it can be considered that the magnetic field (or strictly

speaking, the magnetic induction)B is generated by only one equivalent current dipole. However,

it has to be taken into account that the bigger the area is, theless accurate is the description of the

biological activity provided by the ECD model (Hämäläinen et al., 1993; Hämäläinen and Ilmoniemi,

1994). Nevertheless, as long as the activity is generated within one or two well-separated small regions

the ECD model is satisfactory.

In summary, the equivalent current dipole model consideredas an ILE is widely used as the simplest

model to describe the unidirectional primary current density in a few cubic centimeters of an active

brain.

2.7 Lead Fields

In previous sections it has been shown that there is a linear relation between B related to the PCD. Thus,

for each detectori the output of a magnetometerBi can be expressed as a linear function of the form:

Bi =

ˆ

Q
ki(r) · jp(r)d3r. (2.28)

with the vector fieldki(r) playing the role of the kernel. This vector field (ki(r)) describes the

sensitivity distribution of each sensor and depends on the conductivityσ and on the coil configuration

of the magnetometer or gradiometer system (Sarvas, 1987; Hämäläinen et al., 1993; Hämäläinen and

Ilmoniemi, 1994). The integral in equation (2.28) extends over a finite volumeQ (often called the

source space) where the current distribution is believed tolie.

By analogy with equation (2.28), the lead fieldkEi of an electric measurementVi is given by:
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Vi =

ˆ

Q
kEi (r) · jp(r)d3r. (2.29)

with Vi being the potential difference between theith electrode and a reference electrode.

Assuming the ECD model for the PCD, the magnetic field can be obtained by substituting equation

(2.24) in (2.28) as:

Bi = ki(rQ) · Q.

Using this equation the three components of the lead field matrix ki(rQ) can be found for any dipole

position rQ as long as the magnetic fieldBi is provided. Furthermore if the PCD is modelled as a

superposition ofng simultaneous ECD then the magnetic field takes the form:

Bi =

ng
∑

j=1

ki(rj) ·Qi. (2.30)

Using equation (2.30) we can definens simultaneous equations for thens sensors output as:

B = KQ (2.31)

whereK is anns × 3ng matrix with the elementkij as the lead field vector for theith sensor due to

thejth dipole,

K =













k1,1 k1,2 · · · k1,ng

k2,1 k2,2 · · · k2,ng

· · · · · · · · · · · ·
kns,1 kns,2 · · · kns,ng













VectorQ is ordered in blocks so that all three spatial components of aspecific dipole appear directly

one after the other in the form:

Qp =
(

. . . ,Qp,x
k ,Qp,y

k ,Qp,z
k , . . .

)T
,

T represents vector transpose.B is anns dimension vector built from theBi in each sensors in the

same way asQ.

If the source space is further discretized into a grid withng volume elements, the average primary

current densityjp in voxelVk is intertwined with the current dipole in this voxel by:

Qk = j
p
k∆Vk.

Given this relation and considering equation (2.31), a relation between the PCD and the magnetic

field can be obtained as :
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B = Kjp. (2.32)

An expression equivalent to (2.32) can be found for the electrical case. In this case, the vector that

represents the potential difference between theith electrode and a reference electrode plays the role of

Bi while KE plays the role ofK. Since the form of equation (2.32) is the same for both the magnetic

and electric cases in the next chapters they will not be explicitly differentiated. ThusK andd will be

used to refer to the lead field matrix and the EEG/MEG signal vector, respectively. In the same way, the

superscriptp in the notation of the PCD will be drooped. With this notationchanges equation (2.32) can

be rewritten as:

d = Kj + n (2.33)

wheren is ns dimensional vector that represents the additive instrumental noise that affects the

signal recorded in the sensors.

Using the above formulation, the following lead field characteristics can be illustrated:

1. they are vector quantities that reflects the sensitivity profile of each sensor;

2. they are affected by the relative location of the source space and the detection coil;

3. they are influenced by the conductivity profile and, hence,different conductor models will corre-

spond to different lead field patterns. It is worth noting that the expansion functions automatically

exclude any contribution from magnetically silent sources;

4. since the expansion functionski(r) are completely determined by the geometric details of the

sensors for a given source type, the lead field only need to be calculated once for each sensor

arrangement.





3
Formulation of swLORETA in the time domain

Our mind is capable of passing beyond the

dividing line we have drawn for it. Beyond

the pairs of opposites of which the world

consists, other, new insights begin.

Hermann Hesse

3.1 Introduction

As explained in section (1) several methods have been developed in order to determine the neural gener-

ators of the EEG/MEG signal recorded on the scalp. One of these methods, sLORETA, was introduced

by Pascual Marqui in 2002. Due to its accurate tomographic properties, e.g. zero-localization error for

single dipoles in noiseless simulated data (Pascual-Marqui, 2002; Wagner et al., 2004), it has rapidly

grown in popularity among EEG/MEG researchers. However, italso has some limitations: its spatial

resolution is limited in the presence of noise and when two dipoles are active simultaneously (Pascual-

Marqui, 2002; Wagner et al., 2004).

In order to overcome those limitations, it is presented herea new algorithm named Standardized

Weighted Low Resolution Tomography (swLORETA). In contrast to sLORETA, swLORETA incorpo-

rates a singular value decomposition (SVD) based lead field weighting to compensate the tendency of

the linear inverse procedures in general, and sLORETA in particular, to reconstruct the sources close to

the location of the sensors. The sensitivity of the solutionto the presence of noise is also decreased.

As a consequence, swLORETA is superior to sLORETA particularly under noisy conditions and for the

reconstruction of deep sources.

The first part of this chapter will be devoted to the mathematical foundations of the Minimum Norm

(MN) method (section (3.2)), the basis of sLORETA and swLORETA. Then, sLORETA will be pre-

sented in section (3.3). Finally swLORETA will be developed(section (3.4)) and its tomographic prop-

erties will be demonstrated using simulated (section (3.5)) and experimental data (section (3.6)).

15
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3.2 The Minimum-Norm Inverse Solution

MN, as well as all distributed source localization methods,solve equation (3.23) assuming that there

is a large number of dipolar sources distributed over the brain (ng ≫ ns). Different procedures have

been proposed to place these dipolar sources inside the brain depending on the anatomical information

available. Usually, this dipolar sources are positioned toform a 3D grid of points inside the head.

Furthermore, if an MRI images is at hand, this grid is placed in coregistration with it. Additional

information can be used to further restrict the space of possible solutions by assuming that the EEG/MEG

signal can only be generated within the gray matter. Thus, only the points that belong to it are used as

part of the source space. Other authors also assume that the EEG/MEG sources are perpendicular to the

cortex surface that is represented by the white/gray matterinterface(Dale and Sereno, 1993). This last

constrain will not be considered here.

Due to the assumption about the amount of possible generators introduced by the MN method, the

lead field matrixK rank is less than3ng, therefore equation (2.32) has an infinite number of solu-

tions (the ill-posedness property of the bioelectromagnetic inverse problem (Helmholtz, 1853)). Conse-

quently, to compute a unique solution additional knowledgeabout the current sources inside the head,

besides the anatomical constraints already explained, have to be introduced. In this thesis, the Bayesian

framework to incorporate such priors information and the MAP (maximumà posteriori) principle to

select the “best estimate” for the PCDj will be used.

A Bayesian model is defined by its functional form, which is given by equation (2.32), and by two

probability distributions: a prior distributionp (j |β) that summarizes our initial state of knowledge

about the mathematical and anatomical properties forj and the likelihoodp (d | j, λ), which states the

prediction the theoretical model makes about the datad when the parameter vector has a particular value

j (Tan and Fox, 2001; Mackay, 1992). An expression for the posterior distribution can then be found

using the Bayes rule (Mackay, 1992; Tan and Fox, 2001):

p(j |d, λ, β) =
p(d | j, λ) p(j |β)

p(d |λ, β)
(3.1)

whereλ andβ are named hyperparameters and express the degree of uncertainty about the priors as-

sumptions and the predictions, respectively; both parameter are supposedly known.p(d |λ, β) is a

normalization constant called the evidence forλ andβ that is ignored because it is irrelevant for the

inference ofj.

The likelihoodp (d | j, λ) is defined by making assumptions about the statistical properties of the

experimental noisen in equation (2.32). A typical assumption is that the sensor noise can be expressed

in term of a multivariate Gaussian distribution with zero mean and covariance matrix:

Σd,noise = (1/λ) Ins (3.2)

whereIns is the identity matrix of sizens, 1/
√
λ is the standard deviation of the noise. Therefore,

the likelihood function can be written as:
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p(d | j, λ) = p(n = d− Kj |λ) = Nns(Kj,Σd,noise), (3.3)

whereNn(µ,Σ) is then dimensional Gaussian distribution of ann size random vectorx, mean vector

µ andn× n covariance matrixΣ,

Nn(µ,Σ) =
1

(2π)n/2 |Σ|1/2
exp

(

−1

2
(x− µ)TΣ−1(x − µ)

)

. (3.4)

On the other hand, assuming that the PCD follows a Gaussian distribution with zero mean and

covariance matrix:

Σj = (1/β) I3ng (3.5)

whereI3ng is the identity matrix of size3ng × 3ng denotes the choice of the mathematical and

anatomical constrains andT denotes matrix transpose. Under this ansatz the prior distribution can be

expressed as:

p(j |β) = N3ng(0,Σj) (3.6)

Substituting equations (3.3) and (3.6) in equation (3.1) the posterior probability is given by:

p(j |d, λ, β) ∝ exp

(

−1

2

{

λ (d −Kj)T (d− Kj) + β jT j
}

)

(3.7)

∝ exp

(

−1

2

{

λ ‖d − Kj‖2 + β ‖j‖2
}

)

, (3.8)

where‖x‖2 represents the square of the Frobenius’ 2-norm given by‖x‖2 = Trace(xTx).

To find the “best linear unbiased estimate” the posterior probability given by equation (3.8) with

respect toj has to be maximized. This is is equivalent to minimize the function:

F (d; j) = −2 log (p (j |d, λ, β)) (3.9)

= λ (d − Kj)T (d − Kj) + β jT j + const (3.10)

The problem of findingj can then be formally written as

ĵ = arg min
j

{F (d; j)} (3.11)

= arg min
j

{

λ ‖d − Kj‖2 + β ‖j‖2 + const
}

(3.12)

This problem is equivalent to theTikhonov regularizationtechnique according to the general scheme

of balancing between trust in the data and fidelity to priors (Tikhonov and Arsenin, 1997; Tarantola,

1987).
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A formal solution to this problem for given values ofλ, β, K andd may readily be found by setting:

∂

∂jk

{

λ (d − Kj)T (d − Kj) + β jT j
}

= 0 (3.13)

wherejk is thekth component ofj andk = 1, 2, . . . , 3ng. This leads to the following equation for

the estimator ofj (see Appendix (A)):

ĵ(α) =
(

KTK + αIns

)−1
KTd (3.14)

or equivalently (see Appendix (A)),

ĵ(α) = KT (KKT + αIns)
−1d =: T(α)d (3.15)

whereIns is the identity matrix of dimensionns × ns andα is a non-negative number called the

regularization parameter which is defined asα = β/λ.

3.2.1 Generalized Cross Validations

In the previous section the equation (3.15), which providesa linear mapping between the data vectord

and the PCDj given the lead field matrixK, was derived. In order for this map to be completely defined

the value of the regularization parameterα, which is assumed to be known, has to be provided. Several

methods have been proposed in order to obtain this parameter, i.e “L-curve” (Tan and Fox, 2001). Here

the generalized cross-validation (GCV) method (Golub et al., 1979) will be used. The GCV estimate of

α is the minimizer of the generalized cross-validation errorGCV E(α) given by:

GCV E(α) =
1

ns

ns
∑

i=1

(

di −
(

Kj[i]
)

i

)2
wk(α) (3.16)

where
(

Kj[i]
)

i
is the ith component of vectorKj[i] and j[i] is the PCD obtained with theith data

point omitted given by:

j[i] = KT
[i]

(

K[i]K
T
[i] + αIns

)

−1
d[i],

with K[i] andd[i] obtained from matrixK and vectord obtained by removing itsith row andith

component, respectively.w(α) is given by:

wk(α) =
1 − Akk(α)

1 − 1
nTrace(A(α))

whereA(α) = K
(

KTK + αI3ng

)

−1
KT .

In a nutshell, the generalized cross-validation error defined in equation (3.16) measures the weight-

ing mean squared difference between the actual output of theith detector and its predicted output. Such

predicted output is obtained from a PCD that have been calculated after removing the contribution of the
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detector under analysis. The resulting value ofα after generalized cross-validation is given by taking

the derivative ofGCV E(α) with respect toα and setting it to zero.

3.3 Standardized Low Resolution Electromagnetic Tomography

The sLORETA method computes a statistical map by performinga location-wise inverse weighting of

the MN inverse solution results with their estimated variances. By applying this normalization statistical

parametric maps (SPMs) are obtained. Those maps provide information about the statistical reliability

of the estimated PCD distribution at each brain point over time with millisecond accuracy.

Mathematically, the starting point of sLORETA is the PCD distribution obtained by equation (3.15).

The task now is to compute the standard deviation of the PCD toperform the aforementioned normaliza-

tion. Taking into account the linear relation in equation (2.32) and the independence between the noise

and the PCD, the covariance of the magnetic fluxΣd can be written as (for details see Mardia et al.,

1979):

Σd = KΣjK
T + Σd,noise (3.17)

which under the assumptions given by equations (3.2) and (3.5) takes the form:

Σd = KKT + αIns (3.18)

From equation (3.18) and making use of the linear relation inequation (3.15), the covariance of the

estimates PCD is given by:

Σ
ĵ
= T(α)ΣdT(α)T = KT (KKT + αIns)

−1K (3.19)

Finally, the sLORETA solution (Pascual-Marqui, 2002) is obtained from equations (3.19) and (3.15)

in the following way:

ĵsLORETA,l =
{[

Σ
ĵ

]

ll

}

−1/2
ĵl =

{[

Σ
ĵ

]

ll

}

−1/2
Tld (3.20)

wherêjsLORETA,l is a 3-dimensional vector corresponding to the PCD at voxell,
[

Σ
ĵ

]

ll
is a3 × 3

matrix given by thelth diagonal block of the matrix in equation (3.19),ĵl is a 3-dimensional vector

corresponding to the MN solution at voxell, andTl is the3×ns submatrix ofT(α) belonging to voxel

l.

Equation (3.20) is well defined in the sense that the matrix
{[

Σ
ĵ

]

ll

}

−1/2
can always be obtained.

For this, an SVD of
[

Σ
ĵ

]

ll
can be used to compute the inverse square roots of the non-zero singular

values (Wagner, 1998).
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3.4 Standardized Weighted Low Resolution Electromagnetic Tomogra-

phy

The MN method is known to lead to superficial source distributions. This bias towards superficial

currents is associated to the attenuation of the MEG and EEG signals with increasing source distance

to the electrodes and follows from equations (2.16) and (2.17). This problem is clearly illustrated by

equation (3.12) which is a minimizer of a cost function composed of a least-square error and a penalty

term that is a norm of the currents. This minimization process will bias the solution towards one which

minimizes the norm, whereas the bias would normally be towards minimizing the error (whenβ or

equivalentα = 0). If two different PCD distributions can produce the same magnetic field signals

(within a level of accuracy given by the regularization parameter), then the one in which the current

sources are deep within the brain will require stronger sources to do so (see equation (2.16) and (2.17)).

Thus, the solution with sources closer to the surface will have a smaller norm and consequently will

be favored. To compensate for this effect and ensure that sources are likely to influence the EEG/MEG

equally at the electrodes irrespective of their depth, deepsources are givena priori covariance larger

than the covariance given to the superficial ones. Several methods have been proposed to generate the

corresponding covariance matrix. One of them indexes the depth by the norm of the lead field for

each source and the covariance component of this constraintis defined as a3ng × 3ng diagonal matrix

Σj =
(

diag
(

KTK
))

−1
(Ioannides et al., 1990; Grave de Peralta Menendez and Gonzalez Andino,

1998.).

For our new approach, swLORETA, we need to perform a normalization that compensates for the

varying sensitivity of the sensors to current sources at different depths. For each current source location

l, there are three columns in the lead field matrixK that corresponds to the three components at that

position. These three columns describe how the measured electric/magnetic fields at each sensor depend

on the current sources at locationl. Therefore, a normalization which compensates for this fact must

estimate the relative sensitivity and modify the corresponding columns ofK to make the sensitivities

equal for alll (Kohler et al., 1996; Fuchs et al., 1999).

To this end, an SVD is performed on the three columns of the lead field matrix that corresponds to

positionl. This SVD factors the submatrix as follows:

Kl = UlΓlV
T
l (3.21)

The orthogonal matricesUl andVl represent rotations to a coordinate system which diagonalizes

Kl. Thus, the matrixΓl contains only three diagonal elements, which are the singular values ofKl

(êdl d = 1, 2, 3) and represents the system sensitivity at voxell. From these singular values the PCD

covariance matrix (Σj) can be constructed as follows:

Σj
1/2 = s−1/2 ⊗ I3 (3.22)

where⊗ denotes the Kronecker tensor product,I3 is the identity3 × 3 matrix, ands is a diagonal
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ng × ng matrix with diagonal elementsl be the maximum sensitivity at voxell, i.e. sl is the maximum

of the diagonal elements ofΓl (sl = max3
d=1 ê

d
l ) for l = 1, . . . , ng.

Taking the covariance matrix in this form1, is equivalent to rewrite equation (3.23) as:

d =
(

KΣj
1/2
)(

Σj
−1/2 j

)

+ n (3.23)

where the new unknown variable (Σj
−1/2j) have the identity matrix as its variance. Using the nor-

malized lead field̃K = KΣj
1/2as the lead field matrixK in equations (3.15)–(3.19) a “pre-standardized”

PCD can be obtained from equation (3.20) as (Pascual-Marqui, 2002):

j̃ = Σj
1/2

ĵsLORETA (3.24)

3.5 Analysis of Simulated Data

3.5.1 Description of the Simulations

In this section, the results of a study carried out to test thetomographic properties of the swLORETA

approach and to compare it to the sLORETA method will be presented. For this analysis simulated MEG

data was used.

The head-sensor arrangement was taken from a real experiment and the spatial setup of the sensors

corresponded to the configuration of the magnetometers in a 4D Neuroimaging MAGNES 2500 WH

system: 148 magnetometers arranged in an array uniformly distributed (mean inter-channel spacing of

2.9 cm). The head was modeled as a spherical, radial symmetric conductor (Hämäläinen et al., 1993),

that was used to calculate the lead field with the aid of the Sarvas equation (Sarvas, 1987). An equivalent

dipoles model was chosen to simulate the MEG signal. A 3D gridwas then fitted to the back of the brain

where each point represented an equivalent dipole that could have generated the MEG signals. A total

of 9 × 17 × 17 = 2601 points was used with a minimum distance of7.8 mm in thex-axis and8.7 mm

in y-axis andz axis. The origin of the coordinate system was the meeting point between thex-direction

through the nasion to inion and they-axis through the left to the right ear; thez-axis was the axis

pointing upward (to the vertex of the head). The 3D grid was further clipped by the grey and white

matters. Consequently, only 1281 voxels of the total amountof voxels were finally located inside the

source space. Due to the location of the source space, only the 90 sensors placed in the back of the

helmet were selected for the simulations as shown in figure (3.1). Finally, the radial component of all

simulated dipoles was removed before calculating the forward solution because it is silent in the selected

head model (Sarvas, 1987).

1Note that this approach can be applied to anyprior covariance matrix for the PCD (Σj), as long as it is positive definite,
and there exists a meaningful decompositions of the form:

Σj =

“

Σj
1/2

”T “

Σj
1/2

”
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Figure 3.1: Sensor configuration.

3.5.2 Measures to Characterize the Methods

In the case of single dipole simulations, the following three measures were chosen to evaluate the prop-

erties of the inverse algorithms.

1. Localization error: it was defined as the Euclidean distance between the maximumof the current

distribution and the position of the simulated dipoler0.

2. Activation volume: it was calculated by counting all voxels with strength above 60% of the max-

imum PCD distribution and then dividing that number by the total volume of the source space.

Finally, this magnitude was expressed in percentage. The total volume of the source space was

defined as the volume of a single voxel (7.8 mm× 8.7mm × 8.7 mm = 590.382 mm3) multiplied

by the total number of voxels inside the source space (1281).

3. Activation probability: it counted how many times the simulated dipole position is active with a

value greater than the60% of the maximum PCD distribution and divided this value by thetotal

number of realizations (300 noise realizations are performed for each dipole position (see section

(3.5.3))). The selection of regions of interest according to the amount of voxels where the PCD

lies above a particular threshold has been used often in realexperiments (Alonso-Prieto et al.,

2007; Barnikol et al., 2006).

In the case of two dipole simulations a measure named“averaged activity deviation(d′)” is introduced

to account for the localization error and the spread of the estimated PCD:

d′ =

(

∑ng

i=1 ‖ji‖mink{‖rk − ri‖2}
∑ng

i ‖ji‖

)
1

2

(3.25)

wherei = 1, . . . , ng is the number of voxels in the source space,rk is the position of the original

dipoles,ji andri represents the estimated PCD and the center of the position of voxel i, respectively.

Furthermore, values between 0 and 1 were normalized via

d =
d′

dmax
(3.26)

wheredmax is the maximum possible value ford′. This corresponds to the current source being a

δ-function located at the furthest possible voxel location.
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Figure 3.2: Localization error of both methods for single static dipole simulations. The eccentricity is
first normalized to the head radius, measured horizontally along thex-axis and then expressed in % .
Different SNR levels are tested. The error bars indicate onestandard deviation of the localization error.
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Figure 3.3: Activation probability for the swLORETA and sLORETA methods versus eccentricity.

3.5.3 Single Dipole Simulations

In this section, the tomographic properties of swLORETA will be illustrated using single dipole simula-

tions.

A static dipole was simulated nine times along thex-axis through the center of the source space

while thex coordinate of the test dipole varied from−39 mm to−101.2 mm. They andz coordinates

were fixed at2 mm and15 mm, respectively. For each given dipole position, the dipole was oriented in

either they or z direction. The strength of the dipoles was normalized to 1 after removing the radial

component. Gaussian white noise with zero mean and standarddeviation given by the desired signal-to-

noise-ratio (SNR) was added to each detector after the forward solution. The SNR was defined as the

maximal magnetic flux over all detectors divided by the standard deviation of the noise. Four different

levels of noise were analyzed and 300 noise realizations foreach dipole position were used to estimate

the mean and standard error. The three measures described insection (3.5.2) were calculated for each

of the nine dipoles withy or z orientations and then the result of each measure was averaged over both

orientations (figures (3.2-3.4)).
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Figure 3.4: Activation volume measured using a threshold of60% of the maximum versus eccentricity.

The localization error of both methods is shown in figure (3.2). As expected, for both methods the

localization error decreased as the eccentricity increased but swLORETA presented the best performance

for all eccentricity and SNR values. Especially, note that the differences between both methods increased

when the SNR decreased and the swLORETA localization error was always the smallest. This tendency

was especially marked for deep sources.

On the other hand, the activation probability index was always maximal in the case of swLORETA

except for the lowest value of SNR and eccentricity (figure (3.3)). In contrast, for sLORETA it was

maximal only for eccentricities above 50% while for deep sources it drops to zero. This result was true

despite the fact that the activation volume of swLORETA was smaller than the activation volume of

sLORETA in all simulated conditions (figures (3.4) and (3.5)). These findings demonstrated the ability

of swLORETA to focus the reconstructed PCD around the true position of the dipole.

When a single dipole was placed in all possible positions according to the source space used and

with orientationsx, y andz, the tomographic properties of swLORETA remained better than those of

sLORETA (figure (3.6)).

3.5.4 Two Dipoles Simulations

In a second step a 2-dipole configuration set that consists ofseveral two-dipole arrangements was imple-

mented. The new arrangements differ only with respect to their positions and mutual orientations. Thus,

thez-component of all dipole positions was fixed (z = 15 mm), the superficial position of dipole no. 2

in the right hemisphere remained the same through all configurations (x = −93 mm andy = 44 mm)

and current dipole no. 1 approached dipole no. 2 from the lefthemisphere and stayed superficial in all

settings.

Parallel and orthogonal relative orientations of the dipoles (figure (3.7)) were tested. In parallel con-

figurations, both dipoles were arranged in a line parallel tothe y-axis. In the orthogonal configurations,

one dipole was oriented along they axis, and the other along thez axis. The averaged activity deviation

index was used to characterize the properties of both methods.
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Figure 3.5: A) and C) show the reconstructed current source densities for two different simulated dipole
positions using the sLORETA method. B) and D) show the swLORETA solution for the same two
configurations. The arrows indicate the positions of the original dipoles. A SNR = 6 was used for this
simulation. As can been seen for this figure, the activity volume of swLORETA method is smaller than
the activity volume of sLORETA method. The cursor represents the location of the maximum PCD.
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Figure 3.6: Localization error and angle difference averaged across different positions and orientations
of a static dipole versus SNR for both methods.

Figure 3.7: Orthogonal configurations: Dipole no. 2 indicated by a black spot does not change its
position between the configurations whereas the other dipole is approaching. Each colored spot at dipole
no. 1 describes a different configuration.
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Figure 3.8: Averaged activity deviation versus the dipole distances for different SNR and relative dipole
orientations.
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As can be seen in figure (3.8), both methods showed the same tendency: for a given angle value (0

or 90), the activation deviation index exhibited the same values for different SNR but all values obtained

when angle = 0 were higher than those obtained when angle = 90.Additionally, the activation deviation

values decreased when the distance between both dipoles increased. On the other hand, the swLORETA

activation deviation index was always smaller than that of sLORETA. These results suggested that the

spatial resolution of swLORETA is higher than that of the sLORETA in the presence of two dipoles

simultaneously active.

Both methods were able to separate the sources when those sources were distant, equally superficial

or had an antiparallel orientation. It is important to note that the methods were able to separate parallel

sources only when they were very distant. It is also worth mentioning that the swLORETA method

separated sources for the antiparallel better than the sLORETA method (figure (3.9).

Figure 3.9: Current source reconstruction for nearby antiparallel sources using both sLORETA and
swLORETA. The swLORETA reconstruction (left) is able to distinguish the two sources clearly. The
sLORETA reconstruction (right) is much less clearly separated. The sources are both equally superficial,
and are located 35mm apart. The cursor represents the location of the maximum PCD. (SNR= 6).

3.6 Analysis of Experimental Data

In order to test the applicability of swLORETA inverse algorithm under real-life circumstances, a clas-

sical visual spatial attention experiment was designed andanalyzed. This kind of experiments addresses

the attentional mechanisms involved in the selection of relevant information at multiple stages of visual

processing. It was selected because the time course of attentional effect as well as the brain regions as-

sociated to it have been studied extensively. Consequently, it is possible to elaborate a precise working

hypothesis about the active source. The next paragraphs summarizes the findings reported in the spatial

attention literature.

In a typical spatial attention task two conditions are compared: an attended condition, in which sub-

jects focus attention on visual stimuli placed in attended locations of the visual field; and an unattended

condition, in which similar stimulation environment is present but subjects focus attention elsewhere in

the visual field. The paradigmatic finding is that the perception and discrimination of the stimuli placed

in the attended location is significantly facilitated (Lucket al., 1996, 1997; Martinez et al., 1999, 2001,
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2007). EEG/MEG studies have demonstrated that this facilitation occurs within the first 100 ms after

stimuli presentation and remains until about180 ms since the amplitude of both the P1 (80 − 120 ms)

and N1 components (140 − 180 ms) is higher for the attended conditions especially over the posterior

scalp (Luck et al., 1996; Martinez et al., 1999, 2001, 2007).The neural generators of those attention sen-

sitive components have been determined using dipole and distributed source modeling methods as well

as co-registration with PET and fMRI. Most of the studies locate the neural generators of P1 component

in mid occipital regions around V3/V3a, the immediately anterior middle occipital gyrus, the ventral

occipital cortex around V4 and the fusiform gyrus (Luck et al., 1997). Usually, the highest activation

is found in the hemisphere contralateral to the attended visual field. The N1 attention effect has been

associated to the activation of parietal, ventral occipital-temporal and frontal areas (Russo et al., 2002,

2003). Recordings of single unit activity in monkeys (Luck et al., 1996, 1997; Martinez et al., 1999,

2001, 2007) and fMRI studies in humans (Martinez et al., 2001, 1999) have confirmed the involvement

of extrastriate visual areas V2, V3a, V4, MT, the inferotemporal cortex and the posterior parietal cortex

3.6.1 Materials and Methods

Subjects

Twelve right handed subjects (all females, mean age29 ± 6 years), who had normal or corrected to

normal vision, participated in the study after giving theirinformed consent. All subjects were healthy

and had no signs of neurological or psychological impairments. The study was in accordance with

the Declaration of Helsinki and the Institutional Committee on Human Research of the University of

Ilmeanu where the data was registered.

Stimuli and procedure

The stimulus consisted of a rectangular black and white checkerboard (angular size:5.5◦) of 25 rect-

angles (angular size of each rectangle:0.01◦, Michelson’s contrast: 50%) and a black arrow (angular

size: 1.7◦). It was placed at the horizontal meridian: the arrow was placed in the center of the screen

and the stimulus either in the left or right visual hemifield (distance between arrow and checkerboard:

1 cm) (figure (3.10)). It was displayed on a white background (Michelson’s contrast between stimu-

lus and background: 50%), generated using an LCD Samsung monitor (refreshing rate:60 Hz, mean

brightness:300 cd/m2) and presented to both eyes. The colors of the checkerboard were reversed in a

counterphase square wave temporal pattern at1.67 Hz (1 contrast reversal every600 ms). The interval

inter-stimulus was a random value between300 and500 ms (figure (3.10)). Subjects were comfortably

seated in front of the monitor and they were instructed to fixate the arrow through out the experiment

while attending to the visual hemifield it pointed to. They had to press a key when they detected that the

white checks turned gray. Eight blocks of100 trials each were presented. Within a block the arrow was

always pointing to the same hemifield and targets had a 20% chance to be presented. From the remain-

ing 80% standard trials, 40% was presented in the attended hemifield. Task requirements concerned

with working memory load and attention shifting, which could potentially confound the interpretation
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Figure 3.10: Experimental stimuli and design. See text for further details.

of spatial attention effects, were controlled. Thus, subjects were instructed that the cue (central arrow)

was going to be pointing always to the same hemifield within a block. Furthermore, cue and stimulus

were always presented together. Consequently, subjects need neither to hold the spatial information in

working memory nor to shift attention to other locations within a block (except for the first trial of each

block which was disregarded from the analysis). Moreover, targets were presented only to maintain a

proper level in subjects’ attention and motivation during the task but they were not included in the anal-

ysis. Instead, only standard attended and unattended stimuli were analyzed In this way, it was avoided

possible confounds with brain functions related to target processing and motor response.

Electrophysiological recording

The EEG analog signal was recorded continuously from62 scalp sites using the A.N.T. (A.N.T., En-

schede, The Netherlands) amplifier (gain:30000) and62 Ag-AgCl electrodes mounted on a WaveGuard

cap according to the10 − 5 electrode system. The impedance of all electrodes was< 40 kΩ at the

beginning of the experiment. EEG was recorded using a0.01 − 200 Hz bandpass filter and the signals

were sampled at512 Hz. All recordings were referenced to linked mastoids and then average-referenced

off-line.

Data processing

The raw data waveforms were high-pass filtered by convolvingthem with a 4th order Butterworth filter

with half power cutt-off of1 Hz. We also applied a Notch filter centered at50 Hz. Eye movements were

corrected using a spatial filtering method based on pre-selection approach (Ille et al., 2002). In addition,

remaining artifacts exceeding±75µV in any channel were rejected. Artifact free data was divided

into epochs ranging from−200 ms to800 ms after stimulus onset for both the standard attended and the

standard unattended conditions. Then, for each trial, baseline correction was applied by subtracting from

the post-stimulus interval the mean amplitude of the pre-stimulus interval between200 ms and100 ms.

ERP analysis

The selected epochs were averaged and then ERP amplitude analysis was performed in order to confirm

that the experimental design elicited the P1 and N1 attention effect described in the literature and thus
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validate the application of the inverse method. For each subject and experimental condition P1 and N1

components were defined as the most positive and negative peaks that appeared between80−120 ms and

140−180 ms, respectively (Martinez et al., 2007). The right and leftelectrodes where ERPs were largest

were identified among a group of12 posterior electrode sites in each hemisphere (Cp1-Cp2, Cp3-Cp4,

Cp5-Cp6, Tp7-Tp8, P1-P2, P3-P4, P5-P6, P7-P8, PO3-PO4, PO5-PO6, PO7-PO8, O1-O2). Then, the

corresponding amplitude values were submitted to statistical analysis. To this end, Friedman ANOVA

test (p < 0.05) was used and, if the test results were significant, planned comparisons were made using

the Wilcoxon Matched Pairs Test (p < 0.05; Bonferroni corrected for multiple comparisons).

Source analysis

Afterwards, brain sources of P1 and N1 components were modeled using swLORETA. To this end,

the grand averaged waveforms were first obtained for each condition separately and then two analysis

windows (80− 120 ms and140− 180 ms) were determined. Finally, swLORETA was applied. In order

to confirm the obtained results, the analysis was repeated for each subject as well. Regions of interests

were selected by applying a 65% cut off threshold to the activation strength of the sources at the time

of the peak. Note that difference waves were not used and instead the reconstruction on each condition

was performed separately. This was done to avoid possible confounds in P1 and N1 components latency

and amplitude which in turn may affect the source localization analysis.

3.6.2 Results

ERP results

As in previous studies P1 and N1 components increased their amplitude during the attended condition.

Friedman ANOVA analysis demonstrated that the differencesbetween attended and unattended con-

ditions were significant for the P1 (Chi2 = 62.03; df = 7; p < 0.00) and for the N1 components

(Chi2 = 41.28; df = 7; p < 0.00). Planned comparisons using Wilcoxon Matched Pair Test (Bon-

ferroni corrected) showed that the P1 attention effect was present only in the electrode placed in the

brain hemisphere contralateral to the stimulated visual hemifield (table (3.1)). For the N1 component

the attention effect was present in both brain hemispheres irrespective of the stimulation hemifield al-

though the mean amplitude was higher over the contralateralhemisphere (table (3.2)). Figure (3.11)

illustrates the grand averaged scalp topography of both components for all conditions together with the

ERP waveforms at the electrode location where components presented the highest amplitude.

Source analysis

Brain areas active during the time window of P1 component were localized in striate visual area BA

17, middle occipital gyrus next to BA 18, and middle temporalgyrus next to BA 37 irrespective of

the experimental conditions: attended or unattended stimuli (figure (3.12)). Interestingly, the activation

strength was always higher in the attended condition (figure(3.12)). Additionally, in the attended con-

dition the right hemifield stimulation evoked bilateral activations while the left hemifield stimulation
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Figure 3.11: Grand averaged scalp topography of P1 and N1 components for both conditions and stimu-
lation hemifields. The bottom part of the image shows the grand averaged waveforms for two electrodes,
PO7 and PO8.

P1 amplitude(µV)

Stimulation hemifield/ Mean amplitude± SD Z p-level
Electrodes location Attended Unattended

Left/Right 3.89 ± 1.77 2.87 ± 1.34 3.06 < 0.01

Right/Left 3.02 ± 1.40 2.22 ± 1.08 2.35 < 0.01

Left/Left 1.37 ± 1.13 0.51 ± 0.75 2.43 ns
Right/Right 1.31 ± 1.30 0.59 ± 0.86 2.35 ns

Table 3.1: Results of the statistical comparisons between attended and unattended conditions for the P1
components. ERP amplitudes evoked by the attended stimulusin a given electrode location (right or left
hemispheres) were compared to the amplitude evoked by the unattended stimulus in a similar electrode
location (Wilcoxon Matched Pairs test,p < 0.01, Bonferroni corrected).
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N1 amplitude(µV)

Stimulation hemifield/ Mean amplitude± SD Z p-level
Electrodes location Attended Unattended

Left/Right −3.09 ± 1.66 −1.82 ± 1.07 3.06 < 0.01

Right/Left −2.83 ± 1.13 −1.98 ± 1.04 3.06 < 0.01

Left/Left −1.90 ± 1.24 −0.82 ± 0.87 2.90 < 0.01

Right/Right −2.55 ± 1.44 −1.24 ± 0.73 2.82 < 0.01

Table 3.2: Results of the statistical comparisons between attended and unattended conditions for the N1
components. ERP amplitudes evoked by the attended stimulusin a given electrode location (right or left
hemispheres) were compared to the amplitude evoked by the unattended stimulus in a similar electrode
location (Wilcoxon Matched Pairs test,p < 0.01, Bonferroni corrected).

evoked contralateral activations (figure (3.12)). The unattended condition always evoked contralateral

activations.

Brain sources found to be active during the time window of N1 component were located in the oc-

cipital gyrus next to BA 18 and 19, in the temporal fusiform gyrus BA 37 and in the middle frontal gyrus

next to BA 10 of both hemispheres for both stimulation conditions. As in the case of P1 component,

attended conditions presented the highest activation strength (figure (3.13) ).

3.6.3 Discussion

In this section, the swLORETA method was applied to a classical spatial attention experiment in order

to test its tomographic properties in a life-like environment.

It was found that both experimental conditions evoked the activation of similar areas but their acti-

vation strength differed. This result is in line with the idea that spatial attention modulation behaves as

a selective amplification of neuronal activity between80 and200 ms after stimuli onset (Hillyard and

Anllo-Vento, 1998). Active areas were localized in the striate visual area BA 17, middle occipital gyrus

next to BA 18, and middle temporal gyrus next to BA 37 between80 and120 ms, similar to previous

studies in macaque monkeys and humans (Hillyard and Anllo-Vento, 1998; Luck et al., 1997, 1996).

Additionally, the results suggest the existence of attention modulations in striate visual area, V1.

This outcome has previously been found in fMRI and iEEG studies but has been more elusive in scalp

EEG experiments probably because the attentional modulation of V1 neuronal response is not as strong

as the modulation of extrastriate areas. Indeed, it has beensuggested that the attentional effect; as

the suppressive interactions among competitive, simultaneously presented stimuli; scales with receptive

field sizes (Kastner et al., 1999; Pessoa et al., 2003). In other words, it may take place most effectively

in anterior extrastriate visual areas, which have big receptive fields, while it may be weak in V1, which

has small receptive fields (Kastner et al., 1999; Pessoa et al., 2003). In this study, the experimental

design, which minimizes the demands to working memory and attention shifting while emphasizes early

visual processing; the quality of the data as well as the tomographic characteristics of swLORETA

may have helped to isolate the contribution of such a weak source to the scalp voltage distribution.

Nonetheless, it should be considered also that swLORETA have a tendency to smooth out the sources as
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Figure 3.12: swLORETA source reconstruction results. The reconstruction was applied on the Grand
Average waveform during the time interval of P1 component.
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Figure 3.13: swLORETA source reconstruction results. The reconstruction was applied on the Grand
Average waveform during the time interval of N1 component.
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the simulation studies have shown. This fact may have hindered the possibility of resolving the activation

of neighboring areas such as V2 and V3. It has been consistently reported that the activation of this last

area is enhanced by attention (Martinez et al., 2007, 2001; Russo et al., 2003). Therefore, we cannot

rule out the possibility that the activation found in this study for V1 corresponds to a source in V2 which

has been smoothed out by the inverse reconstruction method employed.

Interesting results were also found concerning the differential activation of both brain hemispheres.

Thus, the activation strength of the above mentioned brain areas reach the imposed cut off threshold

in both brain hemispheres for right hemifield stimulation and only in the right hemifield for left hemi-

field stimulation. This observation is in line with previousreports that have demonstrated that severe

contralesional neglect is usually seen after lesions to theright hemisphere but not after lesions to the

left hemisphere (Lynch and McLaren, 1989; Watson et al., 1994). This may indicate that the right

hemisphere controls the distribution of spatial attentionacross the entire visual hemifield and thus can

respond to a stimuli presented either in the right or in the left visual hemifield. In contrast, the left

hemisphere regulates mainly the contralateral hemifield and thus responds to contralateral stimulation

(Gitelman et al., 1999; Spiers et al., 1990; Heilman et al., 1985).

Between140 and180 ms attentional modulations were localized in the occipitalgyrus (BA 18 and

19), temporal fusiform gyrus (BA 37) and middle frontal gyrus (BA 10). Previously, it has been es-

tablished that brain regions continue active after their participation in the feedforward sweep (Lamme

and Roelfsema, 2000). This recurrent processing is important for incorporating the information coming

from higher areas into their responses through lateral and feedback connections (Lamme and Roelfsema,

2000). Consequently, it is not surprising that extrastriate visual areas are found active beyond100 ms.

Additionally, frontal area BA 10 was found active to. This area has been related to executive functions

(Alvarez and Emory, 2006; Jurado and Rosselli, 2007) which were indeed emphasized by our experi-

ment. Thus, to achieve a good performance in the applied taskprocesses such as concentrated attention

on a given visual hemifield, goals maintaining, stimulus judgment and decision making were required.

Summarizing, the result were in good agreement with previous reports that have used a wide variety

of analysis techniques. Consequently, they give support tothe conclusion that swLORETA is able to

retrieve correctly brain sources under real life conditions.

3.7 Conclusions

The swLORETA method presented in this chapter introduces anSVD lead field weighting to improve the

tomographic performance of widely used distributed inverse methods such as MN and sLORETA. In this

way, the benefits of the more appropiate lead field weights wascombined with the benefits of sLORETA.

Indeed, the new approach has several advantages, it is tomographic properties are more robust with

respect to the SNR as well as its ability to separate simultaneously active sources, as the single and

two dipoles simulations demonstrated. Especially, swLORETA exhibits the maximal probability index,

which approximates very well the performance of an inverse method under real experimental conditions.

Only for very deep sources (eccentricities below 50%) swLORETA activity probability index is different
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from 1. Moreover, swLORETA is able to reconstruct accurately the EEG/MEG generators under real

experimental conditions as demonstrated by analyzing a spatial attention experiment.



4
Time Frequency Domain Inverse Solution

Meaning and reality were not hidden

somewhere behind things, they were in them,

in all of them.

Hermann Hesse

4.1 Introduction

For a long time it has been suggested that oscillatory neuroelectric activity is one of the candidate

mechanisms used by neurons placed in different and sometimes distant regions of the brain to interact

over time and produce a unified cognitive experience (Freeman, 1998; Basar et al., 1999; Varela et al.,

2001). Thus, time varying patterns of theta, alpha, beta andgamma waves have been related to sensory

and cognitive functions such as memory, attention and feature binding (Kahana, 2006; Kelly et al.,

2006; Klimesch, 1999; Luu et al., 2004). Consequently, it isimportant to develop analysis methods

able to characterize the dynamics of the brain signals recorded on the scalp in the time and frequency

domains, as well as to localize the sources of those time varying spectral components. This combined

time-frequency representation overcomes the inadequacy of frequency domain analysis to fully capture

the nature of non-stationary signals. Thus, in contrast to frequency domain analysis, it is able to describe

how the spectral content of a given signal evolves over time.This characteristic may even become crucial

under some circumstances. Imagine, for example, that two EEG signals are acquired in response to the

presentation of a top part of a face (condition A) and in response to a bottom part of a face (condition B).

When applying FFT, it can be obtained that both signals exhibit similar spectral peaks at10Hz and3Hz.

From this analysis one can conclude that both experimental conditions provoke a similar brain response.

A time-frequency domain analysis, on the other hand, would reveal that the dynamics response of this

process is actually different. In order words, while condition A provokes the3Hz peak at100ms and

the 10Hz peak at170ms the opposite holds for condition B. In this way, it is possible to disentangle

apparently similar brain patterns.

37
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In this chapter, it will be explained how swLORETA algorithmcan be used to find the anatomical

generators of spectral components of the scalp data. Specifically, swLORETA will be used to compute a

time-resolved spectrum of the “electric neuronal activity”. Finally, swLORETA tomography properties

will be illustrated by means of the spatial attention experiment already introduced.

4.2 swLORETA in the Time Frequency Domain

To estimate a time resolved spectrum of the current sources that generate the EEG/MEG a method that

involves three basic steps is proposed. These three steps are 1) time resolved spectro-temporal represen-

tation of the EEG/MEG data, 2) calculation of the spectro-temporal representation for the swLORETA

estimate and 3) calculation of the swLORETA time-frequencypower spectrum. Note that to study

evoked oscillations, which bears a constant latency and phase relationship with the eliciting event, all 3

steps are applied on the averaged waveforms. To study induced activity, which bears a loose relationship

with the stimulus, steps 1 and 2 are repeated for each trial separately and then, the results are averaged

across trials in step 3.

4.2.1 The Hilbert Transform

To decompose a signal in its time-frequency domain a varietyof methods have been developed, for

example, the short time Fourier transform, the wavelet transform (Lachaux et al., 2002) and the Complex

demodulation (Papp and Ktonas, 1977). This work will be limited to the use of the analytic signal based

on the Hilbert transform (Gabor, 1946; Bendat and Piersol, 2000) but any of the other methods can be

used in a similar fashion. A time resolved spectral analysisof a signals(t) will yield a two dimensional

representation of the signal in time-frequency product space. Such spectro-temporal representation is

a complex valued function which consists of amplitude valueA(w, t) and a phase valueψ(w, t), such

that:

z(w, t) = A(w, t) eiψ(w,t) (4.1)

In other words, to estimate the amplitude or the phase at timet and frequencyw one first needs to

determine the above complex value. Note that this is also needed to estimate more complex measures,

e.g. phase synchronization and coherence, which will be used later in this thesis. The first step to

compute this spectro-temporal representation is to decompose the signals(t) into neighboring frequency

components by applying a band pass filter with bandwidth center atw given the signals(w, t). After

that, the complex value representation given by equation (4.1) has to be computed for the band-pass

signals(w, t). One standard method to compute such a complex representation is to form the so called

analytic signal. The basic idea is that negative frequency components of the Fourier transform of a real

valued signal are redundant so they can be discarded withoutlosing any of the signal’s information.

This characteristic is due to the symmetry of the frequency domain representation around the origin (see

appendix (B) details) that is:
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S(−w) = S(w)T

whereS(w) is the Fourier transform of the real value signals(w, t) andT denotes the complex

conjugate. Moreover, the analytic signal is written in the following complex form:

z(w, t) = s(w, t) + i s̃(w, t) (4.2)

wheres(w, t) is the real valued signal,̃s(w, t) is the Hilbert transform andi is the imaginary unit.

To arrive to this expression the Fourier transform of the analytic signal should be defined as:

Z(w) :=



















2S(w) forw > 0,

S(w) forw = 0,

0 forw < 0

= S(w) · 2U(w)

whereS(w) is the Fourier transform of the real valued signals(w, t) andU(w) is the Heaviside step

function. This expression only includes the non-negative frequency components ofS(w). Nonetheless,

this operation is reversible since it is possible to get the original spectrum of the signal by taking into

account the Hermitian property ofS(w) as:

S(w) =







1
2Z(w) forw > 0,

S(|w|)T forw < 0.

Finally, taking the inverse Fourier transform ofZ(w) the imaginary part of the analytic signal in

equation (4.2) is given by:

s̃(w, t) =
1

π
P.V.

ˆ

∞

−∞

s(w, τ)

t− τ
dτ (4.3)

Equation (4.3) is named the Hilbert transform of the real valued signals(w, t) (for more details

about the derivation of this equation see appendix (B)). Themagnitudes(w, t) ands̃(w, t) can be used

to compute the instantaneous amplitude and phase of equation (4.2) as:

A(w, t) = |A(w, t)| =
√

s2w(t) + s̃2w(t)

ψ(w, t) = arg (s(w, t))

wherearg represents the complex argument function.

Both the geometrical interpretation of the instantaneous amplitudeA(w, t) and phaseψ(w, t) are
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Figure 4.1: A) The phase (red curve) is geometrically interpreted as the angle between a fixed direction
(positive x axis) and the current system state (blue curve). B) The signal is shown in red and the
magnitude of its analytic signal in blue. Note the envelope effect.

represented in figure (4.1) for each time point. Note that fornarrow band signals the modulus of the

analytic signal coincide with the envelope of the filter signal s(w, t) (Bendat and Piersol, 2000). In

other words, it corresponds to the amplitude of the oscillation which is a measure of the signal spectrum

content. In the next sections, the procedure of computing the analytic signal will be called the “Hilbert

analysis” and the operation of applying the Hilbert analysis to the functionf will be denoted aŝHf .

Also, the linear property of the Hilbert analysis will be used. This means that given the functionf(t) as

f(t) = c1f1(t) + c2f2(t) where the Hilbert transform of thef1(t) andf2 exist then:

Ĥf(t) = Ĥ (c1f1(t) + c2f2(t)) = c1Ĥf1(t) + c2Ĥf2(t) (4.4)

This property will allow developing a computationally efficient algorithm to determine the spectro-

temporal representation of the brain structures that generates the EEG/MEG signals.

4.2.2 Source Spectro-Temporal Estimation

To determine the spectral evolution of the brain areas that produce the recorded EEG/MEG signals it

would be sufficient to apply the algorithm described in section (4.2.1) to the swLORETA estimates

given by equations (3.20) and (3.24). Unfortunately, this procedure is mathematically correct but com-

putationally expensive because it involves the calculation of the Hilbert transform for each of the usually

thousands of source space points. If unaveraged signal is used this number multiplies by the amount of

trials. Fortunately, the linear properties of both the Hilbert Transform and swLORETA can be exploited

to overcome this difficulty. Thus, the spectro-temporal representation of the swLORETA result for the

ith voxel can be written as:

Ωl(w, t) = Ĥ jswLORETA,l(w, t) (4.5)

whereΩl is a3-dimensional vector which contains the analytic signal forthe rows of the swLORETA
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estimates,jswLORETA,l is the3-dimensional vector corresponding to the swLORETA result at voxel l

given by equation (3.24) and̂H is the operator that applies the Hilbert analysis independently to each row

of the vector placed to its right. Considering that, as equations (3.20) and (3.24) point out, swLORETA

can be seen as a linear operator applied to the data vectord comprising:

ĵswLORETA,l = Wl d with Wl :=
{

[Σj]l
}

−1/2
{[

Σ
ĵ

]

ll

}

−1/2
Tl

Wl is a3×nsmatrix which represents the swLORETA operator,[Σj]l is a3×3ng submatrix ofΣj

corresponding to thelth voxel (equation (3.22)),
[

Σ
ĵ

]

ll
is a3× 3 matrix given by thelth diagonal block

of the matrix in equation (3.19),Tl is the3 × ns submatrix ofT(α) associated with voxell given by

equation (3.15). This, together with the linearity of the Hilbert analysis given by equation (4.4), allows

to re-state equation (4.5) as:

Ωl = Wl

(

Ĥ d
)

(4.6)

As in equation (4.5), this magnitude has to be computed for all voxels l in the source space. At

first glance, it would appear that this reformulation is inefficient too becausens Hilbert transforms will

have to be computed instead of the3 Hilbert transforms needed in equation (4.5). This is not thecase

because term̂Hd in equation (4.6) have to be computed only one time for all thel voxel in the source

space (since the data termd is the same for all voxels) and then the result has to be multiplied by the

corresponding matrixWl in a loop to get the analytic signal for all voxels in brain space. Consequently,

only ns (≈ 300) Hilbert transforms have to be computed. Finally, the time-varying power spectrum of

the swLORETA estimates for thel voxel can be obtained from equation (4.6) as:

Pl(w, t) = diag
(

Ωl(w, t)Ωl(w, t)
T
)

(4.7)

whereT denotes the transpose complex conjugate anddiag(M) is the diagonal vector formed by

the diagonal elements of the matrixM.

Under the assumption that all the EEG/MEG time series are observations from stationary stochastic

processes, equation (4.7) provides the time-varying spectral context of a single realization of that pro-

cess. Unfortunately, is not sufficient to represent the stochastic process. Therefore, an ensemble ofN

observations must be used to make a statistical estimate of the power spectrum when the unaveraged

EEG/MEG is analyzed. In real EEG/MEG studies this ensemble represents different task repetitions or

trials so that their time-varying spectrum can be written as:

Pl(w, t) =
1

N

N
∑

i=1

diag
(

{Ωl(w, t)}i
{

Ωl(w, t)
T
}

i

)

(4.8)

where{Ωl(w, t)}i is the analytic signal of the swLORETA estimates of theith trial.
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4.3 Analysis of Experimental Data

In this section, swLORETA properties in the time frequency domain will be illustrated using the spatial

attention experiment already introduced in section (3.6).In general, the field of source localization

of EEG/MEG spectral components is relatively unexplored. Consequently, there is some degree of

discrepancies across studies and a working hypothesis should be considered more cautiously. Thus,

spatial attention has been related with oscillations in thetheta (3.5 − 7.5 Hz), alpha (7.5 − 12.5 Hz),

beta 1 (12.5 − 18.0 Hz) beta 2 (18.0 − 30.0 Hz) and gamma (30.0 − 70.0 Hz) bands (Bland, 1986;

Eckhorn et al., 1998; Basar et al., 1999; Delorme et al., 2007; Fan et al., 2007; Deiber et al., 2007, 2008).

The differences between reports may be explained by the use of spatial attentional tasks which mix up

control process and attentional modulation of visual inputs. Each of these elementary mental operations

is likely to have different time and frequency relationships with the incoming stimuli (Deiber et al.,

2007; Fan et al., 2007). In our case, we used an experimental design that decreases the demands on the

attentional control system, especially working memory, while emphasizes early attentional modulations

of visual inputs as well as concentrated attention on a givenvisual hemifield and goals maintaining.

Consequently, we do not expect modulations in the gamma band(previously associated to top-down

processes, working memory and feature binding) (Herrmann and Mecklinger, 2000, 2001) but in theta

band. Theta oscillations have been associated to spatial attention (Deiber et al., 2008, 2007; Missonnier

et al., 2006), and executive attention (Inanaga, 1998; Delorme et al., 2007). Although the physiological

basis of theta oscillations are still unclear, previous noninvasive EEG/MEG studies have suggested that

the brain areas involved in the generation and maintenance of theta oscillations are the hippocampus,

occipital cortex, anterior cingulate cortex, mesial frontal cortex and/or dorsolateral frontal cortex.

Procedure

The characteristics of the subjects who participated in thespatial attention study as well as the method-

ology employed to pre-process the signal have been already described in section (3.6).

Time frequency analysis of evoked and induced scalp EEG activity

To perform this analysis a group of 12 posterior electrode sites in each hemisphere (Cp1-Cp2, Cp3-

Cp4, Cp5-Cp6, Tp7-Tp8, P1-P2, P3-P4, P5-P6, P7-P8, PO3-PO4, PO5-PO6, PO7-PO8, O1-O2) was

selected because they exhibited the highest ERP response (see section (3.6.1)). The time-varying power

spectrum, given the analytic signal, was computed for each electrodes (see section (4.2.1)). Afterwards,

the electrode that presented the highest power in each frequency band (theta:3.5 − 7.5 Hz, alpha:

7.5 − 12.5 Hz; beta 1:12.5 − 18.0 Hz, beta 2:18 − 30 Hz; gamma30 − 70 Hz) was identified and the

mean power over two time intervals (70 − 120 ms and130 − 180,ms) was extracted for each subject,

condition and band. These time intervals were chosen because, as explained in section (3.6), there

is overwhelming evidence suggesting that the attention effect takes place during that time. Finally,

statistical analysis was applied to determine for which frequency band there were significant differences

across conditions.
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Figure 4.2: The power spectrum of the grand average of two representative electrodes (PO7 and PO8)
obtained after applying the Hilbert transform.

Time-frequency source analysis

Once the frequency range of the oscillations modulated by attention was known, their brain generators

were determined using equations (4.6), (4.7) and (4.8). Finally, to determine which brain regions ex-

hibited significant differences in the power estimates across time and conditions statistical analysis was

applied.

Thus, evoked and induced scalp oscillations were analyzed using Friedman ANOVA test (p < 0.05)

and, if the test results were significant, planned comparisons were made using the Wilcoxon Matched

Pairs Test (p < 0.05; Bonferroni corrected for multiple comparisons). In the case of the source analysis

the False Discovery Rate Test (FDR) (Benjamin and Yekutieli, 2001) method was used.

4.3.1 Results

Scalp time frequency analysis

Friedman ANOVA analysis revealed that there were significant differences only in the theta power

evoked by each condition between80 and 120 ms (Chi2 = 26.06; df = 7; p < 0.0001) and be-

tween140 and180 ms (Chi2 = 22.86; df = 7; p < 0.001) (figure (4.2)) . Wilcoxon Matched Pairs

Test showed that between80 and120 ms those differences were present only for the electrode located

in the hemisphere contralateral to the stimulation (table (4.1)). Between140 and180 ms the differences

appeared for the contralateral electrode in the case of lefthemifield stimulation and in both the ipsilateral

and the contralateral electrode in the case of right hemifield stimulation (table (4.2)).

Induced oscillations, on the other hand, did not present statistically significant differences between

conditions (figure (4.3)). Nevertheless, as induced oscillations in some frequency range could have

been associated to cognitive processes required by both conditions, the power values across bands for

both conditions and brain hemispheres were compared separately. It was found that between80 and
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Evoke theta power(µV2/Hz) between80 and120ms

Stimulation hemifield/ Mean amplitude± SD Z p-level
Electrodes location Attended Unattended

Left/Right 0.0444 ± 0.0345 0.0257 ± 0.0208 2.75 < 0.01

Right/Left 0.0284 ± 0.0346 0.0122 ± 0.0076 2.82 < 0.01

Left/Left 0.0223 ± 0.0337 0.0099 ± 0.0073 0.94 ns
Right/Right 0.0289 ± 0.0341 0.0131 ± 0.0112 2.35 ns

Table 4.1: Results of the statistical comparisons between attended and unattended conditions for the theta
power evoked from80 to 120ms. Power values evoked by the attended stimulus in a given electrode
location (right or left hemisphere) were compared to the power values evoked by the unattended stimulus
in a similar electrode location. (Wilcoxon Matched Pairs test,p < 0.01 Bonferroni corrected).

Evoke theta power(µV2/Hz) between140 and180ms

Stimulation hemifield/ Mean amplitude± SD Z p-level
Electrodes location Attended Unattended

Left/Right 0.0490 ± 0.0399 0.0291 ± 0.0268 2.59 < 0.01

Right/Left 0.0338 ± 0.0454 0.0132 ± 0.0864 2.75 < 0.01

Left/Left 0.0283 ± 0.0473 0.0114 ± 0.0863 1.26 ns
Right/Right 0.0362 ± 0.0444 0.0152 ± 0.0142 2.59 < 0.01

Table 4.2: Results of the statistical comparisons between attended and unattended conditions for the theta
power evoked from140 to 180ms. Power values evoked by the attended stimulus in a given electrode
location (right or left hemisphere) were compared to the power values evoked by the unattended stimulus
in a similar electrode location. (Wilcoxon Matched Pairs test,p < 0.01 Bonferroni corrected).
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Figure 4.3: Induced power spectrum of a single subject for two representative electrodes (PO7 and PO8)
obtained after applying the Hilbert transform.

120 ms there were differences in power across bands for both the attended (Chi2 = 166.15; df = 19;

p < .00000) and the unattended (Chi2 = 94.65; df = 19; p < .00000) conditions. Similar result was

found from140 to 180 ms for the attended (Chi2 = 92.95; df = 19; p < .00000) and the unattended

conditions (Chi2 = 100.31; df = 19; p < .00000). The highest mean was consistently found in

the theta range (figure (4.4)) but Wilcoxon Matched Pairs Test demonstrated that the differences were

significant only for uncorrected data. Similar results werealso found for the unattended condition. Due

to this finding, source analysis was also applied on induced theta oscillations.

Source Analysis

As it was done for the time domain analysis (see section (3.6)), the source localization method was

applied on both the grand averaged waveform and individual data for each condition, separately. For

the evoked theta oscillations it was obtained that from80 to 120 ms there were significant differences in

the activation strength of occipital (BA 17, BA 19) and middle occipital areas (BA 18) as well as in the

middle temporal region (BA 37) in the hemisphere contralateral to the stimulation (figure (4.5)). From

140 to 180 ms the differences appeared not only in these areas but also in the superior temporal gyrus

and in the middle temporal gyrus (figure (4.5)). Sources of the induced oscillations were placed in the

bilateral middle frontal gyrus, including BA 10 and 46, and the bilateral inferior frontal gyrus. Figure

(4.6) shows the resulting functional probabilistic maps (PMAP).

These maps were builded from the individual time-varying swLORETA power spectrum:

pmap(x, y, z) =
1

N

N
∑

i=1

pi(x, y, z) where pi(x, y, z) :=







1 if ‖Pi(x, yz)‖ > 0.5 · ‖Pi(max)‖
0 otherwise
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Figure 4.4: Mean and standard deviation of induced power spectrum values for the attended condition.
For each value its frequency range, stimulation hemifield and electrode location are indicated. For
example, “theta L / L” stands for frequency theta, Left stimulation hemifield / Left electrode hemisphere.
Note how the theta mean is the highest across all stimulationhemifields. The differences were significant
only for uncorrected data.

wherepmap(x, y, z) is the value of the PMAP at a given voxel with coordinates(x, y, z) andPi(x, y, z)

is the time-varying swLORETA power spectrum for theith-subject at the same voxel.Pi(max) is the

absolute maximum value ofPi for the ith-subject andpi(x, y, z) represents the probability that the voxel

is active with the value above the50% of maxima.

4.3.2 Discussion

The results obtained on the scalp are in agreement with the current state of the knowledge in the field

and so they validate the efficacy of swLORETA. Thus, it was obtained that evoked and induced theta

oscillations are involved in spatial selective attention which is not surprising since previous studies have

demonstrated that theta is involved in several tasks that imposes important demands to the attentional

system. For example, in rodents theta oscillations increase when the animals are exploring the environ-

ment (moving around, sniffing and orienting) (Bland, 1986; Kahana et al., 2001) and performing spatial

as well as non-spatial memory tasks (Givens, 1996; Jensen and Lisman, 2000; O’Keefe and Recce,

1993; Skaggs et al., 1996). Furthermore, it has been shown that long term potentiation is favored at the

peak of the theta cycle while depotentiation is favored at its trough (Holscher et al., 1997; Huerta and

Lisman, 1993). In humans, comparable results have been reported. Scalp and intracranial EEG/MEG

recordings have demonstrated that theta activity raises during verbal working memory (Klimesch, 1999;

Raghavachari et al., 2001), episodic memory (Klimesch, 1999), spatial n-back (Gevins et al., 1997;

Krause et al., 2000), maze learning (Caplan et al., 2001; Kahana et al., 1999) and attention tasks (Deiber
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Figure 4.5: Source analysis of evoked theta oscillations. The image shows the statistical map of brain
theta power values evoked by the attended condition versus the unattended condition. Only voxels that
exhibit significant differences in their power spectrum values are shown. Activations are thresholded at
p < 0.05, FDR corrected.

Figure 4.6: Source analysis of induced theta oscillations.The image shows the brain areas that exhibited
more than 70% of the individual highest power value at each time point, during more than10 ms and in
more than 70% of subjects.
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et al., 2008, 2007; Missonnier et al., 2006).

The varied cognitive content of the experiments for which theta has been found to be relevant allows

thinking that this rhythm may have not a single functional role in cognition and/or that it is related

to more general processes such as attention or cognitive control (Kahana et al., 2001). In line with

this idea, the current results showed that theta has a multifold involvement in spatial selective attention

depending on its temporal relationship with the eliciting stimuli and the functional specialization of

the generating neuronal networks. This idea will be furtherdiscussed in the next two subsections. In

contrast to previous reports, we found attentional modulations neither in the gamma nor in the alpha

bands. Several reasons may explain this discrepancy. First, contrasting studies have suggested that

gamma band may be related either to the selection and identification of relevant information (Herrmann

and Mecklinger, 2000, 2001), e.g. targets, or to the miniature saccades associated to target presentation

(Yuval-Greenberg et al., 2008). In either case, gamma modulations may not be evident in response to

standard stimuli, which were analyzed in this study. Second, gamma oscillations may also be related

to the orienting or executive components of the attentionalnetwork, as suggested previously (Fan et al.,

2007). Any of these components were emphasized by our task. Last but not least, it should be mentioned

that some studies have failed to find gamma synchronization or gamma oscillations at all in monkeys

(Lamme and Spekreijse, 1998; Tovee and Rolls, 1992; Young etal., 1992) and humans (Juergens et al.,

1999). The absence of differences in the alpha band may reflect the fact that the presentation of the

standard stimuli did not modulate significantly subjects’ level of arousal because they were irrelevant

for a proper task performance. Future studies that include experimental conditions able to control this

effect are needed to further clarify this issue.

The evoked theta oscillations were found to rise within two time ranges of the attended conditions:

80 − 120 ms and140 − 180 ms. This result agrees with our own and previous studies thathave shown

that ERPs modulations occurs within these two intervals in spatial attention experiments (Russo et al.,

2003, 2002; Hillyard and Anllo-Vento, 1998; Hopfinger et al., 2004; Martinez et al., 2007). Within both

time periods evoked theta oscillations were localized within structures of the visual pathway responsible

for early extraction of visual basic information and objectanalysis. Comparable sources were found in

this and previous studies in the time domain within similar time intervals. This result provides further

support for the idea that theta oscillations are involved invisual processing. They also suggests that

those oscillations may be closely related to the spatial attention effect observed on the wideband P1 and

N1 components (Martinez et al., 2007; Luck et al., 1996; Hillyard and Anllo-Vento, 1998).

Additional sources of theta evoked activity were found in the superior temporal gyrus and the middle

temporal gyrus between140 and180 ms. From the physiological point of view, the temporal sources

were indeed expected because previous neuroimaging studies in humans have reported increased activity

in temporal regions during visual spatial attention tasks (Corbetta et al., 1998; Gitelman et al., 1999;

Nobre et al., 1997). Furthermore, it has been shown that lesions to superior temporal gyrus provoke

neglect in monkeys even for stimuli presented unilaterally(Lynch and McLaren, 1989; Watson et al.,

1994). In humans, lesions to the middle temporal gyrus (probably extending into the temporo-occipital

region) has also been linked to extinction and other components of contralesional neglect (Bisiach et al.,
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1981; Friedrich et al., 1998). Unfortunately, it is still not clear whether these temporal regions are linked

to attention-related visual processing of the stimuli or the cue. It has been previously reported that only

the attention-directing cues are able to modulate the activity in the superior temporal sulcus, anterior to

the temporal-parietal junction (Hopfinger et al., 2000). Therefore, it has been suggested that this region

is involved in attentional control circuitry but not in attention-related processing of relevant target stimuli

(Hopfinger et al., 2000). In the paradigm used here the relevant cue remained on the screen during the

presentation of the stimuli and, thus, it cannot be differentiated between cue and stimuli processing.

Further research is needed to give a more precise answer to this issue.

The analysis of induced activity presented a different pattern of results. They were not modulated by

attention but were present in both experimental conditionsand were not associated to the activation of vi-

sual occipital and temporal areas but frontal regions. Thisoutcome may suggest that they are associated

to general processes required for a good performance in spatial attention paradigms. Considering that

the current experimental design emphasized concentrated attention on a given visual hemifield, goals

maintaining, stimulus judgment and decision making it is possible to think that these were the functions

supported by the induced oscillations. The brain areas found to be the sources of these induced theta os-

cillations (bilateral middle frontal gyrus, including BA 10 and 46, and the bilateral inferior frontal gyrus)

bring further support for this idea. These regions have usually been related to executive control (Alvarez

and Emory, 2006; Jurado and Rosselli, 2007). Furthermore, iEEG studies in humans and monkeys have

reported the existence of similar frontal theta activationduring problem solving (Inanaga, 1998), contin-

uous mental activity and preparation for rapid motor responses (Delorme et al., 2007). Thus, it has been

related to concentrated performance of mental tasks and topdown processes.

4.4 Conclusions

In this chapter, swLORETA was extended to the time-frequency domain by applying the Hilbert trans-

form to the time series obtained with the swLORETA inverse solution method. The resulting algorithm

is not only efficient but also accurate as demonstrated by theanalysis of a spatial attention experiment.

In line with previous studies, the obtained results suggestthat allocating attention to a specific location

in the visual field enhances both evoked and induced theta activity. While visual analysis of the stimuli

is associated to evoke oscillations in striate, extrastriate and temporal regions; executive functions are

linked to induced theta oscillations generated in frontal areas. It is worth mentioning that our exten-

sion, as can be seem from the results section, can be applied to the analysis of both evoked and induced

EEG/MEG activity.





5
Functional Connectivity

All great progress takes place when two

sciences come together, and when their

resemblance proclaims itself, despite the

apparent disparity of their substance.

Henri Poincare

5.1 Introduction

Coherent cognitive life strongly depends on the connections between different and sometimes distant

brain regions (Varela et al., 2001; David O., 2002; Weiss andMueller, 2003). For example, visual pro-

cessing in primates is characterized by two major functionally segregated and hierarchically organized

pathways: a ventral stream, which includes areas V1, V2, V4,as well as further stations in inferior

temporal cortex; and a dorsal stream, which includes areas V1, V2, V3, MT/V5, and further stations

in posterior parietal areas (Zeki, 1978; Ungerleider and Desimone, 1986; Young, 1992). Although their

functional segregation is not strict, lesion studies in monkeys and humans have shown that the dorsal

stream favors the analysis of information concerned with motion, low visual contrast, and lower spatial

frequency while the ventral stream favors the analysis of information concerned with color and shape

(Ungerleider and Desimone, 1986; Young, 1992). However, inour daily vision, objects need to be

processed based on, for example, motion and shape cues. How are these different attributes, which

are analyzed by each stream; integrated into a unified, coherent perception? During the last years, the

problem of information binding or integration has receivedsome attention as it poses one of the most

fascinating and fundamental problems in Neuroscience. It has been proposed that the relatedness of

neurons that code different features is supported by the formation of transient oscillatory assemblies or

functional systems (Singer, 1989; Varela et al., 2001).

Two main methods have been developed to determine this functional relatedness between brain

areas: coherence and phase synchronization. Usually, those methods are applied on the scalp level
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which can introduce serious pitfalls. This is due to the factthat, as explained in previous sections,

at the scalp level the signal registered by each detector is amixture of the activity produced by several

areas. As the inverse methods try to resolve this mixture performing coherence or phase synchronization

analysis at the level of the sources should yield to more accurately results and even more important for

the inverse methodology, to a better estimation of active areas. For all these reasons, the present chapter

will illustrate how to combine the swLORETA algorithm and the Hilbert transform described in chapters

(3) and (4) with the phase synchronization (Tass, 1995, 1999, 2004) and coherence index to measure,

non-invasively the amount of functional connectivity.

This chapter introduces the coherence (5.2.1) and phase synchronization measures (section (5.2.2))

for the bivariate case. In sections (5.2.3) and (5.2.4) the coherence and phase synchronization imaging

methods will be introduced. Finally, sections (5.3.2) and (5.4) will be devoted to assess the accuracy of

the proposed method with simulated and real data.

5.2 Functional Connectivity Image Based on swLORETA

5.2.1 Coherence

In neuroscience research, the coherence between two time series that correspond to two different spatial

sensors locations is interpreted as a measure of the functional connectivity between these two locations

(Singer, 1989; Eckhorn et al., 1998; Gross et al., 2001; Pohja et al., 2005). The coherence function

between the pair of signalx(t) andy(t) as a function of frequencyw is defined as:

C(w) =
|Fxy(w)|

√

Fxx(w)Fyy(w)
(5.1)

whereFxx(w), Fyy(w) andFxy(w) are the power spectra and the cross spectrum ofx(t) andy(t) given

by:

Fxx(w) =
〈

X(w)X(w)T
〉

Fyy(w) =
〈

Y (w)Y (w)T
〉

Fxy(w) =
〈

Y (w)X(w)T
〉

whereX(w), Y (w) are the Fourier transforms of the two signalsx(t), y(t) andXT indicates the

complex conjugate ofX. In this way, it is obtained a frequency function that can only take values

between0 and1, where0 indicates no linear correlation between the signals and1 indicates that the two

signals are completely correlated.

When narrow-band signals are analyzed, the coherence function is only meaningful in the narrow

range where there is significant power. Outside this region,it has no sense to talk about the signals

being correlated (since there is essentially no signal there), and numerically, the estimation of the co-

herence function ends up being the ratio of two very small numbers, which typically ends up giving

non-meaningful values from the entire range0 to 1. As a result, the coherence at the peak frequency
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(Eckhorn et al., 1998; Gross et al., 2001)is usually taken.

Here, a slightly more robust approach is proposed. It is based on the creation of a weighted average

of the coherence function over the entire frequency range that is weighted by the amount of power in the

signals at each frequency. In effect, the coherence function is just a normalization of the cross-spectrum,

so this new approach can be thought of as an alternative normalization that reduces the measure to a

single coherence index, defined as:

C ′(x(t), y(t)) = Γ
∑

w

C(w)
√

Fxx(w)Fyy(w) (5.2)

whereC(w) is the standard coherence function, andΓ = 1/
(
∑

w

√

Fxx(w)Fyy(w)
)

is the normal-

ization factor, which is equal to the value that the weightedsum above would obtain for 100% coherence.

This is equivalent to

C ′(x(t), y(t)) =

∑

w |Fxy(w)|
∑

w

√

Fxx(w)Fyy(w)

This average provides a single positive value in the range between0 and1, which represents the

weighted average of the cross spectrum over all frequencies. In this way,C ′(x(t), y(t)) = 1 represents

a perfect linear relation between signalsx(t) andy(t). On the contrary,C ′(x(t), x(t)) = 0 means no

linear relation between the two given signals. The advantage of this measure over the standard procedure

of choosing the value of the coherence function at the peak istwo-fold. First, it eliminates the need to

statistically identify exactly where the peak is and second, the value obtained will be less sensitive to

statistical analysis because it is an average over many frequency bins. From this point forward the ’ will

be omitted and instead will be usedC(x, y) to denote the coherence index betweenx andy given by

equation (5.2).

5.2.2 Phase Synchronization

The notion of synchronization was introduced by the Dutch scientist Christiaan Huygens back in the

17th century. In its classical form, phase synchronizationis usually defined as a locking of the phase of

the two oscillatorsx(t) andy(t):

ϕn,mx,y (t) = mψx(t) − nψy(t) = χ (5.3)

whereψx(t), ψy(t) is the instantaneous phase,t is time,χ is a constant, andn, m are integers that

indicate the ratios of possible frequency locking. This equality can be disturbed by dynamical noise or

by chaos, both can be conceptually considered in the framework of stochastic dynamics. In the case of

small and bounded noise the stable phase dynamics is only slightly perturbed. Thus, the relative phase

ϕn,mx,y (t) mainly fluctuates around some constant level and consequently, the phase locking condition can

be rewritten as:

∣

∣ϕn,mx.y (t)
∣

∣ = |mψx(t) − nψy(t)| < χ (5.4)
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In the case of unbounded noise, i.e data acquisition noise inherent to the EEG/MEG signals, these

nearly stationary fluctuations may be interrupted by phase slips, where the relative phaseϕn,mx,y (t)

changes relatively rapidly (by±2π). Thus, strictly speaking, the phase difference is unbounded and

condition (5.4) is not valid anymore. Nevertheless, it has been demonstrated that the distribution of the

normalized cyclicn : m phase difference

Ψn,m
x,y (t) =

mψx(t) − nψy(t)

2π
mod1

has one or more dominating peaks (Rosenblum and Pikovsky, 2003). The presence of these peaks

can be understood as the phase locking in a statistical sense. In this context, thenormalized cyclicn : m

phase differencecan be considered as a random variable characterized by a probability distribution.

Here, this probability distribution is empirically accessible in the form of a number of realizations of

Ψn,m
x,y (t) in the time intervalt ∈ [ta, tb]. There, in order to characterize the deviation of thenormalized

cyclic n : m phase differencefrom the uniform distribution a synchronization index based onShannon

entropywill be used(Tass, 1999). This index is defined as:

ρm,n(x(t), y(t)) = [Smax − S(t)] /Smax (5.5)

whereS(t) = −∑N
k=1 pk ln pk is the entropy of the actual distribution ofΨn,m

x,y (t),

N = exp(0.626 + 0.41 log(M − 1))

is the optimal number of bins for a distribution ofM points (Otnes and Enochson, 1972; Tass, 1999),

pk is the frequency of findingΨn,m
x,y (t) in thekth bin, andSmax is the entropy of the uniform distribu-

tion given bySmax = lnN . ρm,n = 1 represents a perfect phase synchronization (Dirac distribution)

andρm,n = 0 represents a uniform distribution of thenormalized cyclicn : m phase difference. Al-

ternatively, instead of the Shannon-entropy-based index,one can also use the Kuiper test. This tests is

a modified version of the Kolmogorov-Smirnov test, which is invariant under changes to the arbitrary

choice of zero phase. This provides the probability with which a given distribution can be considered to

be uniform (Tass, 2004). The advantages of the entropy indexis that, in contrast to other kind of phase

synchronization measures like phase coherence (Lachaux etal., 1999; Hurtado et al., 2004), it does not

assume an unimodal distribution for thenormalized cyclicn : m phase difference.

5.2.3 Principle of Coherence Imaging

In section (5.2.1) the concept of coherence as a measure of functional coupling was reviewed. Several

studies have used the coherence index between sensors covering different scalp areas as a correlate of

oscillatory coupling between brain regions. However, as itwas shown in chapter (2), this approach is

limited because of the complex relation between the PCD and the EEG/MEG signal recorded over the

scalp. In this section, a method to estimate coherence between different brain areas and between a brain

and an external signal will be introduced. This last case will be considered because it is relevant for
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research in the field of, for example, Parkinson patients (Gross et al., 2001). In these type of studies,

the tremor generation is studied by determining the coupling between the electromiogram (EMG) and a

brain region. When the EMG-to-brain case is considered, thefact that the estimated signal at each brain

location is a vector with three components has to be solved. To this end, an extension of the weighted

coherence function (equation (5.2) ) that produces a singleindex for all three components will be used.

This weighted coherence function between a scalar signals(t) and a three dimensional vectorj(r, t) is

defined as follows:

C(s(t), j(r, t)) =
3

max
i=1

{C (s(t), ji(r, t))} (5.6)

wheres(t) is the reference signal,j(r, t) is the PCD at locationr, andji(r, t) is theith component of

j(r, t).

When the brain-to-brain case is considered, a similar problem has to be solved but in contrast to

equation (5.6) here both signals are vectors and, thus, an extension to equation (5.6) has to be made as

follows:

C(s(r′, t), j(r, t)) =
3

max
i=1

{

C
(

si(r
′, t), j(r, t)

)}

(5.7)

wheres(r′, t) and j(r, t) are the PCD at voxelr′ andr respectively,si(r′, t) is the component of

s(r′, t) andC (si(r
′, t), j(r, t)) is the coherence between a scalar and 3-dimensional vector given by

equation (5.6). In principle, with equation (5.7) it is possible to compute the coherence between all

possible voxel combinations in brain space but it will be computational expensive. It is more efficient to

identify first one brain region involved in the response of interest. This can be achieved for example by

selecting the voxel which shows the maximum power spectrum during the time and frequency of interest

(see section (4.2.2) for more details) and use it as the reference signals(r′, t) for the computation of the

coherence index with all other voxels in the source space. Another criteria can be to use prior information

given by fMRI or PET. In this case the voxel with the highest response can be selected and used as the

reference signals(r′, t).

The maximum value over the three components in equations (5.6) and (5.7) was chosen instead of

an average or modulus of the three components because the maximum is more robust with respect to

rotations of the coordinate system. For example, consider two highly coherent signals:S1, which is the

external one andS2, which is placed along thex axis. Then, add a small amount of noise to all three

axes, so that thex axis, primarily the signalS2, is stronger than they or z components. Additionally,

place the same signalS2 halfway between thex and y axis. In this second case, bothx andy are

primarily the signalS2. In these two cases, the mean coherence over all three axes will be very different

and it will be much higher for the second case. The maximum coherence over all three axes, however,

will be much more stable under such rotations because the rotation above mentioned will only slightly

reduce the coherence betweens andx.

To avoid spurious detection of coherence, surrogates are prepared by replacings(t) and jk(r, t)

with surrogate signals̄s(t) and j̄k(r, t). The surrogate signals are generated using the DFS (Digitally
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Filtered Surrogate) method (Dolan and Spano, 2001). This produces surrogate data which have the same

power spectra as the original signals and are, in all respects, linear stochastic processes. This means that

any and all correlations betweens(t) andjk(r, t) are eliminated from the surrogate data. Any degree

of coherence between the surrogate signals is therefore dueonly to statistical fluctuations. Of course,

the range of values that the coherence index will take for such uncorrelated signals will depend on

factors such as the power spectra of the signals and the length of the data sets. These surrogates, thus,

allow setting up a confidence level for what constitutes a value ofC statistically different from zero. A

population of300 surrogate data sets were generated, and the coherence indexwas calculated for each

set. The99th percentile of the distribution of surrogate coherence indexes then serves as a baseline for

the coherence analysis, and is subtracted from equation (5.6):

C(s(t), j(r, t)) =
3

max
i

{max{C (s(t), ji(r, t)) − Ca, 0}} (5.8)

whereCa is the above mentioned99th percentile of the coherence index distribution for the surrogate

signalss̄(t) and j̄(r, t). In a similar way, it is defined the 99th percentile for the coherence function

presented in equation (5.7).

5.2.4 Principle of Phase Synchronization Imaging

As in section (5.2.3), a generalization of the synchronization index (Tass et al., 2003) is used to take into

account the synchronization between a scalar signal,s(t), and a three dimensional vectorj(r, t):

ρm,n(s(t), j(r, t)) =
3

max
i

{ρm,n (s(t), ji(r, t))}. (5.9)

whereji is theith component ofj. The signals(t) represents an external signal such as an EMG

measurement or sensory stimulus. The synchronization between two three dimensional vectors(r′, t)

andj(r, t), is defined as:

ρm,n(s(r
′, t), j(r, t)) =

3
max
i=1

{

ρm,n
(

si(r
′, t), j(r, t)

)}

To avoid a spurious detection of synchronization, a baseline correction is again introduced by means

of surrogate analysis. As mentioned above, the null-hypothesis is no longer that there is no correlation

between the signals at all (that issue has already been resolved using the coherence tomography anal-

ysis) but that the signals can be modelled as interacting linear stochastic processes. This indeed, is a

more specific null-hypothesis. For this purpose, surrogates that preserve both the power-spectra of the

original signals, as well as any linear correlations between them are needed. This is accomplished us-

ing the CDFS (Coherent Digitally Filtered Surrogate) method (Dolan and Neiman, 2002; Dolan, 2004).

This method generates pairs of surrogate signals for which the power spectra of the original signals are

preserved and the coherence function of each pair is the sameas for the original signals. Because it is

desirable to test against the null-hypothesis of any sort oflinear correlations, the version of this method

described in (Dolan, 2004), which preserves not only the coherence function but also the phases of the
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cross-spectrum, is used here. Again, 300 surrogate realizations are used. The synchronization index

is calculated in each case, and the 99th percentile of the resulting distribution of values is used as a

baseline.

ρm,n(s(t), j(r, t)) =
3

max
i

{max{ρm,n (s(t), ji(r, t)) − ρam,n, 0}}. (5.10)

5.3 Analysis of Simulated Data

5.3.1 Description of the Simulations

In this section the results of a study carried out to test the tomographic properties of the phase syn-

chronization and coherence image will be presented. This study was performed using simulated data.

Although the phase synchronization image was formulated for the generaln : m case, for these simula-

tions it was limited to then = m = 1 case. The ongoing cerebral activity was simulated by using one of

the two coupled phase oscillators as the time course of a current dipole at locationr0. A phase oscillator

is an oscillator with constant amplitude and it serves as a generic model that approximates various types

of oscillators in physics and biology (Kuramoto, 1984; Winfree, 2001; Tass, 1999). The oscillators were

simulated using the Kuramoto model (Kuramoto, 1984):

ψ̇i = wi +
Γ

2
sin(ψj − ψi) i = 1, 2 i 6= j (5.11)

whereψi are phase variables,wi are the natural frequencies of the oscillators, andΓ is the cou-

pling strength. This model represents the phase dynamics ofan oscillator with time coursexi(t) =

Ai cos(ψi(t)), whereAi represents the amplitude of the oscillator. The time courseof our simulated

dipole isxi(t) = cos(ψi(t)) with constant amplitudeAi = 1. Additionally, w1 = 1.0, w2 = 1.0, and

Γ = 3.0.

The magnetic flux for each time was computed and Gaussian white noise was added to the signals

after the forward solution. In this case, statistically independent white noise signals was added to each

detector. Each of these noise signals is mean zero, with standard deviation given by the desired signal-to-

noise-ratio. To deal effectively with time-varying dipoles the SNR definition was re-defined as follows.

First, the detector with the maximal signal strength over time was selected. That means that it was the

detector for which the standard deviation of the magnetic flux over time was maximal. The standard

deviation of this signal was then divided by the standard deviation of the noise to get the SNR. Note

that the noise strength was the same for all detectors, so those detectors which, in the absence of noise,

measured very weak magnetic fluxes consisted primarily of noise. This random noise was intended to

represent the measurement noise of the detectors. Other potential sources of noise, which had to be

modelled as signals that could be correlated between detectors, were not considered. Figure (5.1) shows

the signals for each MEG detector with a SNR = 6 for the most superficial dipole.

Afterwards, the swLORETA method was used to compute the PCD.The coherence and synchro-

nization indexes between the original phase oscillator andthe estimated PCD for all voxels in the source
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Figure 5.1: Time courses of the simulated MEG signal. Each rectangle corresponds to an MEG sensor.
In this case, a white noise with a SNR = 6 was added to the original signals. Channel 120 represents the
detector with the maximum signal strength over time.

space were obtained by means of equations (5.8) and (5.10), respectively. In these simulations, the posi-

tions of the simulated dipoles were the same as those of the dipoles described in subsection (3.5.3). For

each dipole position, they andz orientations were considered and the results for both orientations were

averaged. In order to estimate the mean and the standard error, 300 noise realizations were used for each

dipole position and direction.

5.3.2 Results

Results are presented in figures (5.2) and (5.3). These figures point out the dependency of the local-

ization error and activity volume on the eccentricity for both methods. swLORETA synchronization

tomography showed a very small localization error for all eccentricity values. In contrast, although the

localization error of swLORETA coherence tomography decreased while the eccentricity increased, it is

only comparable with the swLORETA synchronization tomography for eccentricity values higher than

90%. Additionally, both the localization error and the activation volume of swLORETA synchronization

tomography were smaller than the localization error and theactivation volume of swLORETA (data not

shown here).
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Figure 5.2: Localization error of swLORETA synchronization and swLORETA coherence tomography.
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5.4 Phantom Experiment

5.4.1 Description of the Experiment

This section focuses on a second study performed to test the previously presented algorithms. This time,

the data was generated using a phantom, a composite fiber glass sphere of8 cm diameter figure (5.4)

and recorded by means of140 magnetometers of the 4D Neuroimaging MAGNES2500 WH system

(see section (3.5.1) for details). The advantage of this type of studies is that the dipoles placed inside

the phantom are well characterized in term of their positionand strength. Consequently, the localization

error of a given inverse method can be objectively tested. The phantom was fitted to the helmet portion

of the sensors array and contained5 dipoles withs known fixed positions and tangential orientations. The

distance between adjacent dipoles was1 cm. The phantom was also filled with saline solution to allow

the current to flow when energizing a dipole and produce a changing magnetic field. Each dipole was

constructed by a twisted pair of fine wires running along the inside of the fibreglass rod at the outside

of the sphere with opposite ends separated by0.5 cm. These wires were connected to a switch box

and a function generator outside the MEG shielded room. The function generator provided a variety

of waveforms, including sine-waves, square-waves and other standard waveforms. The amplitude and

frequency of this waveforms was adjusted manually.

Each dipole was energized independently with a10 Hz sinusoidal waveform during30 s at a sample

rate of1000Hz. In this way,5 different MEG data sets were generated. Afterwards, they were band pass

filtered between0.1 Hz and20 Hz. Data previously collected in the same system from a resting human

subject, was also added to achieve a typical SNR. Finally, the original10Hz sinusoidal waveform was

used as the external signal in equations (5.10) and (5.8). The PCD was obtained by using a 3D grid

fitted to the top semi-sphere of the phantom. A total of17 × 17 × 9 = 2601 points were used with a

minimum distance of8.7 mm in thex-axis andy-axis and7.8 mm inz axis. The coordinate system used

was already explained in section (3.5.1). Only the1156 voxels lying inside the phantom were finally

used as source space. During the simulation, the phantom’s dipoles pointed to the surface of the skull in

thez-axis.

Because the position of the current dipoles inside the phantom were known they were used to esti-

mate the localization error of the inverse methods considered here. The localization error was defined

as the Euclidean distance between the maximum of the synchronization index (or coherence index)

distribution and the real position of the current dipole inside the phantom and is shown in figure (5.5).

5.4.2 Results

The localization error is shown in figure (5.5). As in previous simulations, the localization error ex-

hibited a general decrease while the eccentricity exhibited an increase for both the synchronization and

coherence tomographies. This was true despite the fact thatthe “real” MEG signal was embedded in

a more “realistic” noise environment (e.g. the typical background noise present in the MEG shielded

room, subject’s heart beat and respiration). This noise canhave a much more complicated structure

than the Gaussian white noise used in all previous simulations and so it is closer to real experimental
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Figure 5.4: The phantom before the measurement in the MEG system. Reference coils are fixed to the
headof the phantom in order to measure the positions of the MEG sensors relative to the head.

conditions.

Figure (5.5) also shows the localization error for the swLORETA. In this case since there were30 s

of data30000 possible reconstructed images (one for each time sample) existed. Consequently, in order

to compare the performance of the swLORETA with the synchronization and coherence tomography,

its localization error was defined as the minimum error over the set of30000 possible realizations. The

localization error for a given realization was taken again as the Euclidean distance between the maximum

of the PCD and the position of the current dipole inside the phantom for the realization under analysis.

As in previous analysis, the swLORETA localization error decreased with the increase of the eccentricity

and had a maximum of20mm for the deepest dipole. When all3 methods are considered it can be that

the swLORETA synchronization tomography performed betterfor all the tested conditions.

5.4.3 Discussion and Conclusions

In this section, it was demonstrated that a further improvement of the swLORETA source localization

algorithm can be attained by incorporating additional information about the reciprocal functional inter-

actions established between different brain regions during mental tasks. It was empirically demonstrated

that both swLORETA synchronization tomography and swLORETA coherence tomography were supe-

rior to swLORETA. This can be explained but the fact that inverse methods do not estimate the dipoles

strenght accurate but, in contrast, preserve its temporal dynamics. Because swLORETA coherence and

in particular swLORETA phase synchronization tomography use this information a more robust local-

ization of the underlaying sources is attained.

Additionally, it was seen that swLORETA synchronization tomography performs better than the

coherence based tomography. This result is explained by thefact that the synchronization analysis

specifically detects the adjustment of the oscillators phases, thereby taking into account linear and non-

linear features of the signals (Tass et al., 1998; Rosenblumet al., 2001). In contrast, standard coherence
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Figure 5.5: Localization error of swLORETA, swLORETA synchronization and swLORETA coherence
tomography methods, using a simulated phantom experiment.The different eccentricity values corre-
spond to5 dipoles with fixed positions and tangential orientations. A10 Hz sinusoidal waveform lasting
30 s was used to generate the MEG signals.

analysis detects only linear correlations between the signals. This is very important because as MEG and

EEG signals are mixtures, i.e. superpositions of magnetic or electrical fields originating from different

cerebral sources, coherence cannot distinguish between real phase locking and two mixed signals mutu-

ally containing parts of the other (Tass et al., 1998; Rosenblum et al., 2001). Accordingly, when applied

to EEG/MEG signals, standard linear coherence leads to a spatial over-estimation of synchronization

processes as compared to phase synchronization analysis (Rosenblum et al., 2001). As seen here, this

limitation also applies to PCD analysis.



6
Conclusions and outlook

Art is never finished, only abandoned.

Leonardo da Vinci

Several decades have passed since the first attempts to find the underlying sources of the EEG/MEG

signals. Despite the amount of research devoted to this problem and the developments achieved, the

search for better inverse solution methods continues. Two main reasons keep alive this enterprise: the

complicated physics nature of the inverse problem and the appearance of new challenges posed by the

advancements in EEG/MEG technology. Think, for example, the contribution that an accurate inverse

method could make to the brain computer interface technique. This technique aims to guide in real

time an external device according to the subject’s ongoing brain activity recorded on the scalp. It goes

without saying that the identification of the anatomical structure active at a given time can be a trustable

indicator of what the subject which to do with the external device (Lebedev and Nicolelis, 2006).

In this thesis, a new inverse method named swLORETA has been presented. This method, which

is a generalization of sLORETA, uses a singular value decomposition based lead field weighting to

compensate the tendency of the linear inverse procedures ingeneral, to reconstruct the sources close

to the location of the sensors and to decrease the sensitivity of the solution to the presence of noise in

the data. It was shown that the new technique improved the tomographic properties of the sLORETA

and hence the MN under all simulated condition. Moreover, when the algorithm was tested under a

real experimental situation it was able to reconstruct the underlying sources in accordance with previous

studies.

Although this was a good step forward, it does not fully exploit the whole range of valuable informa-

tion contained in the EEG. As neurons oscillates at different frequencies over time it is also important to

study the brain regions activated in the time-frequency space. Consequently, swLORETA was extended

by combining the time series it provides with the Hilbert transform.

Information about the brain functional connectivity pattern established during a given cognitive task

was also computed using the swLORETA algorithm. To this end two indexes were employed: phase

synchronization and coherence. It was demonstrated that taking into account the dynamics of the signal

63



64 Chapter 6. Conclusions and outlook

improved the identification of the different members of the neuronal network especially when the phase

synchronization index was used.

Finally, using the linear properties of swLORETA in combination with the time-frequency decom-

position it was possible to optimize the algorithm to allow its use in real time. Thus, the amount of

computations were decreased from≈ 3000 (typical number of points in the source space) to≈ 300

(number of sensors).

Several lines of development are still waiting ahead. For example, the information derived from other

imaging techniques like fMRI or PET measures can be also usedto further improve the performance of

swLORETA. Additionally, anatomical connectivity information can be obtained using diffusion tensor

image procedure (Behrens et al., 2003; Kaden et al., 2008). This information could be used in addition

to the phase synchronization tomography method developed in chapter (5) to take into account not only

the functional links established between regions but also their actual anatomical connections.



A
Tikhonov regularization

The minimization ansatz, in finding a unique solution by a trade off between fidelity to the data and

fulfillment to the model, is widely used Tikhonov regularization. The degree of the trade off is tuned via

the regularization parameterα. For the minimum it follows:

∂
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j = 2KTd.

whereα = β/λ. From the last equation we get that the PCD (j) can be obtained from the EEG/MEG

data vectorm in the following way:

j(α) =
(

KTK + αI3ng

)−1
KTd. (A.1)
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From equation (A.1) we see that in order to findj we have to invert the matrix

KTK + αI3ng ,

which is of size3ng × 3ng. From chapter (3) we know thatng is in order of3000 thus making this

matrix large for performing an efficient matrix inversion. In order to find an efficient solution to this

equation we appeal to the following matrix identity:

(

KTK + αI3ng

)−1
KT = KT

(

KKT + αIns

)−1
. (A.2)

This identity can be proved as follow:

KT
(

KKT + αIns

)

= KTKKT + αKT

=
(

KTK + αI3ng

)

KT ,

this gives

KT =
(

KTK + αI3ng

)

KT
(

KKT + αIns

)−1

and finally

(

KTK + Ins

)−1
KT = KT

(

KKT + αIns

)−1
. (A.3)

Given equation (A.3) we can rewrite equation (A.1) as:

j(α) = KT
(

KKT + αIns

)−1
d.

in this equation the matrix we have to invert is of orderns × ns with ns ≈ 300. Moreover, this

equation can be solved using the SVD decomposition which is based on the following linear algebra

theorem: AnyM × N matrix A whose number of rowsM is greater than or equal to its number of

columnsN , can be written as the product of anM × N column-orthogonal matrixU, andN × N

diagonal matrixS with positive or zero elements (thesingular values), and the transpose of anN × N

orthogonal matrixV:

A = USV

with

M
∑

i=1

UT
kiUin = δkn 1 ≤ k, n ≤ N (A.4)
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N
∑

i=1

VT
kiVin = δkn 1 ≤ k, n ≤ N (A.5)

The SVD decomposition can also be carried out whenM < N . In this case the singular values

Sj for j = M + 1, . . . , N are all zero, and the corresponding columns ofU are also zero. Equations

(A.4) and (A.5) then holds only fork, n ≤M . The SVD decomposition can always be performed and its

unique except to (i) making the same permutation of the columns ofU, elements ofS, and columns ofV

(or rows ofVT ), or (ii) forming linear combinations of any columns ofU andV whose corresponding

elements ofS are exactly equal.

Using the SVD decomposition of the leadfield matrixK we can find a computation efficient algo-

rithm to calculatej(α) from equation (A.1). For that we can take:

K = USVT

so we have,

KKT =
(

USVT
) (

USVT
)T

=
(

USVT
) (

VSTUT
)

= USVTVSTUT

= USSTUT (A.6)

where we have taken into account equation (A.5). Using equation (A.6) we have:

(

KKT + αIns

)−1
=

(

USSTUT + αIns

)−1

= U
(

SST + αIns

)−1
UT

we have made used of the following matrix inversion property:

(AB)−1 = B−1A−1.

Finally multiplying byKT = VSTUT we get:

KT
(

KKT + αIns

)−1
= VSTUTU

(

SST + αI3ng

)−1
UT

= V
ST

(

SST + αI3ng

)UT
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From this equation we see that

j(α) = V
ST

(
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)UTd,

additionally,
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Tijdj ,

where
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whereSk is the k diagonal element ofS.

Taking this into account we can rewriteTij as:

Tij =

3ng
∑

k=1

Vik

(

STk
(

S2
k + α

)

)

UT
kj.

From this equation we can see thatTij is well defined even fork > ns where the eigenvalues are0

or close to0 (null space ofK). It is for this eigenvalues where we observe the numerical relevance of

the regularization parameter (α) which reduces the weighting for the data which are associated with the

small singular values. Since the smallest singular values not only enhance the data (we multiply a value

which tend to infinite), it also amplifies the noise in it. Therefore, depending on the level of noise in

the data, we need different amounts of protection against the noise-amplifying effects of reconstruction

using the small singular values, which essentialy consistsin applying a large regularization.



B
Analytic Signal and Hilbert Transform

If f(t) is a real function that can be represented by an inverse Fourier transform then we have the

following relationship in the time domain:

s(t) = sT (t) (B.1)

but

s(t) =
1

2π

ˆ

∞

−∞

S(w)eiwtdw (B.2)

taking the complex conjugate of equation () we get:

sT (t) =
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1

2π

ˆ

∞
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]T
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1

2π

ˆ
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ST (w)e−iwtdw

replacingw by −w′ we get:

sT (t) =
1

2π

ˆ

∞

−∞

ST (−w′)eiw
′tdw (B.3)

we have made use of:

ˆ b

a
f(x)dx = −

ˆ a

b
f(x)dx.

From equality (B.1) and comparing equations (B.2) and (B.3)we obtain the following relation:

S(w) = ST (w)

or

S(−w) = ST (w) (B.4)

and we see thatF for negative frequencies can be expressed byF T for positives ones in the case of a
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real value function. This mean that the positive frequency spectra is sufficient to represent a real signal.

Taking into account the redundancy of the negative frequency (equation (B.4)) we can define the

following function:

z(t) = 2
1√
2π

ˆ

∞

0
S(w)eiwtdw,

but
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ˆ
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therefore
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The second part is the Hilbert transform of the signals(t). From this equation is easy to deduce the

linearity of the analytic signal discussed in section (4.2.1) as follow:

Given the functionf(t) asc1f1(t) + c2f2(t) where the Hilbert transform off1(t) andf2(t) exist

then:

Ĥf(t) = Ĥ (c1f1(t) + c2f2(t))
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