eemagnm_e,.swL

Medical Imaging Solutions GmbH

EEMAGINE - MEDICAL IMAGING SOLUTIONS GMBH

Functional Imaging based on swL ORETA
and phase synchronization

Author:
Ernesto Palmero Soler

Supervisor:
Prof. Dr. Jens Haueisen

SUBMITTED IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THEDEGREE OF

DOCTOR IN SCIENCE

May 18, 2010






To my family, especially
To my parents, Lourdes and Emilio
To my grandparents, Margarita and Angelo
To my angel of every day, Esther






Acknowledgements

In my experience, a PhD work is not possible without the hé&lmany people, some of whom are not
even aware of their contribution. For that reason and takihgantage of the synchronization between
my brain and my heart | would like to thank to:

my colleagues at EEMAGINE for their kindness and suppogeeglly to Jacob Kanev and Christoph
Demmer who always have a word of comfort and understanding.

my friend Frank Zanow. | really enjoyed to work and talk wiimrend, in general, he and his family
made the distance to my homeland shorter.

to my first supervisor in neuroscience research and perfgradl Nelson Truijillo, for his invaluable
comments and support during more that 7 years, for cleaprifpeiclouds during obscure times.

especially, | thank my friend Eduardo Aubert who has shaiskiowledge and wisdom and has
been always there for me.

Particularly fruitful has been the collaboration with miefrid Kevin Dolan who introduced me to
the art of C++ programming and signal processing and withrwhbave spend many hours enjoying
good movies and food.

The time spend with my former colleagues at the Researcte€auélich Dr. Jurgen Dammers and
Andrea Muren was a very useful one. Specially, Andrea Mgrability with the MEG system was of
invaluable help.

| greatly valuable Prof. Dr. Jens Haueisen for supervisiiygaark.

My whole-life friend and teacher Jesus Novoa Blanco whaihticed me to science when | was still
a kid and forever became a beacon during dark hours and acbmsémory in my mind.

To my family, specially my brother Emilio, who have educatsldeltered and supported me in all
aspects of my life.

To my parents Lourdes and Emilio not only for the obvious oeasf giving me the Life, but also
for giving me the best of their life and supporting me even mheas an stubborn child: this thesis is
dedicated to them.

| breathless thank to my grandparents Margarita and Angelthiir care and great advice which



have helped me throughout the worst moments of my life.
| would like to thanks Esther Alonso for helping review thismuscript.



Abstract

In order to overcome some of the limitations of the distolinverse solution algorithms, a new algo-
rithm named Standardized Weighted Low Resolution TomdgrdpwLORETA) was developed. The
swLORETA algorithm incorporates a singular value decoritjoos(SVD) based lead field weighting
to compensate the tendency of the linear inverse procedugeEneral, and sSLORETA in particular, to
reconstruct the sources close to the location of the sens@iso contributes to decrease the sensitivity
of the solution to the presence of noise. An extension of Wie3RETA to the time-frequency domain
was also developed by applying the Hilbert transform to itme series obtained with the swLORETA.
Finally, the coherence and phase synchronization imagettoas were introduced to assess functional
connectivity within the brain.

The tomographic properties of SWLORETA and sLORETA were pared using both simulated
and real data. In the simulation studies, the reconstnuaifosingle and multiple current dipoles was
simulated varying their position and orientation across shurce space and taking into account the
presence of noise. The real data was obtained from healtijgcts who performed a classical spatial
attention experiment. The tests performed demonstragdtta resulting algorithm is not only efficient
but also accurate as demonstrated by the analysis of alsp#iation experiment.






Zusammenfassung

In dieser Arbeit wird ein neuer Algorithmus, Standardize@igtited Low Resolution Tomography
(swLORETA) genannt, vorgestellt, der einige der Beschuéigken von verteilten Losungen fir eine
Quellenlokalisation beseitigt.

Der swLORETA-Algorithmus enthalt eine Wichtung fur das tueigsfeld, das auf eine singular
value decomposition (SVD) basiert. Damit wird die Tendeeelohearen Quellenlokalisation im Allge-
meinen und von sSLORETA im Besonderen, die Quellen zu nahez$dnsorpositionen zu lokalisieren,
kompensiert. Die veranderte Wichtung tragt auch zu eineralime der Rausch-Empfindlichkeit der
Losung bei. Eine Erweiterung von swLORETA in den Zeit-Freng+Bereich wurde entwickelt. Dies
geschah durch Anwendung der Hilbert-Transformation aiutréiben, die durch swLORETA erzeugt
wurden. Schliglich wurden Bildgebungsmethoden fir die Koharenz und diaseh-Synchronisation
eingefuhrt, um die funktionalen Verbindungen im Gehirn mtessuchen.

Die tomographischen Eigenschaften von swLORETA und sLOR&Uirden mit Hilfe simulierter
und realer Daten verglichen. In den Simulations-Studiendeulie Rekonstruktion von einzelnen wie
multiplen Dipolen bei Berlcksichtigung von Rauschen sieryl wobei sowohl die Position als auch
die Orientierung variiert wurde. Die realen Daten wurden gesunden Probanden aufgenommen, die
ein klassisches raumliches Aufmerksamkeits-Experimestiarten. Die Testergebnisse dieses Exper-
iments zeigen, dass der Algorithmus nicht nur effizient itlghesondern auch genaue Resultate zur
Analyse derartiger Experimente liefert.
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1

General I ntroduction

| have been impressed with the urgency of
doing. Knowing is not enough; we must
apply. Being willing is not enough; we must
do.

Leonardo da Vinci

In 1875, the Liverpool physician, Dr. Richard Caton recdrder the first time electrical brain
activity in vivisected rabbits and monkeys. Half a centwatet, in 1924, the German physiologist and
psychiatrist Hans Berger became the first person to recatd signals from the human brain. A whole
new era was then open for the neurosciences as the eleapteiogram (EEG) gave the possibility
to obtain objective information about brain functioningdrrelatively easy, non expensive and, more
importantly, non invasive way.

It is not fully understood yet how the EEG is produced. The thagsepted hypothesis is that it re-
flects the summed activity of post-synaptic currents (PadIRamesh, 2006). Thus, an action potential
in a pre-synaptic axon causes the release of a neurotraesmib the synapse. This neurotransmitter
diffuses across the synaptic cleft and bounds to the rexepfa post-synaptic dendrite. As a conse-
guence, there is a flow of ions into or out of the dendrite, Whiicturn results in compensatory currents
in the extra cellular space. It is believed that these egth@ar currents are responsible for the scalp
EEG voltages (Paul and Ramesh, 2006). It should be notedhbaEEG does not give information
about a single neuron. Rather, it gives information abowtrsg neurons which fire synchronously and
have similar spatial orientation, radial to the scalp. @ouently, the EEG mostly registers the activity
of apical dendrites in the cortex that have a parallel, fadi@ngement.

The EEG is not the only imaging technique that assists neiguists in the the study of brain
functions. As the neuronal electrical activity can be meagwn the scalp, it is also possible to measure
the magnetic field associated to it. This was done for thetiimg in 1968 by the Canadian born physics
David Cohen. Since its introduction, the magnetoencepinaio (MEG) systems have experienced a
fast growth. From the first equipments, which used only a fetectors, today there are dewars helmet-
shaped which contain as many=as800 sensors that cover most of the head. Those sensors weagyniti

1



2 Chapter 1. General Introduction

copper induction coils, today they are extremely sensgiiyserconducting quantum interference devices
that can cope with both the weakness of the signal and thegstref the competing environmental noise.

Compared to other techniques such as positron emissiorgtaiptoy (PET) and functional magnetic
image (fMRI) one of the main advantages of EEG and MEG as relseand clinical tools is their
temporal resolution, which is in the order of millisecondiifortunately, they both have also a major
drawback: their spatial resolution. In other words, it igoasible to know with certainty which brain
area has generated the signal measured at the scalp. This is the fact that the cerebrospinal fluid,
the skull and the scalp placed between the brain currentesand the sensors smear the current flow
before it reaches the scalp. During the last years, mangiretsers have tried to overcome this limitation
by developing methods that solve what has been called timedgjpetic inverse problem (Ebersole and
Wade, 1990; Caplan et al., 2001). The main difficulty to ogere in order to develop such methods is
determined by the physics nature of the problem: the meamms do not contain enough information
about the generators as proven by Helmholtz in 1853 (Helimht$53). This limitation, termed the non-
uniqueness of the inverse problem, prescribed the existefan infinite number of “correct” answers.

In order to limit the amount of “correct” answers, it is nes&y to introduce models that incorporate
additional information or constrains about the anatoméal mathematical properties of the current
inside the head. By using differenptiors” information several aspects of the intracranial curreat c
be modelled and thus different types of inverse solutionthous, i.e. dipolar methods, distributed
etc.(Hamalainen and limoniemi, 1994) can be developed.

Despite the recent development of algorithms that havelaeatization error under ideal conditions
(Pascual-Marqui, 2002), there are still two main problelrat seriously affect linear inverse solution
algorithms: the tendency to underestimate deep generatdasor of cortical ones and the instability
of the solution in the presence of noise. The reason for teedirthese difficulties rests on the fact that
electric and magnetic fields are inversely related to theusgaf the distance. Consequently, the fields
generated by deep sources decay too fast and produce weakssig sensor locations. The second
difficulty is particularly important since EEG/MEG signa$ia low SNR.

In this work, it is proposed a modification of the Standardit®w Resolution Electromagnetic
Tomography (SLORETA) (Pascual-Marqui, 2002) named Stafizied Weigthed Low Resolution Elec-
tromagnetic Tomography (SWLORETA). It will be shown thatqmared to SLORETA, swLORETA has
better tomography properties in the presence of noise aride same time, has less bias toward super-
ficial sources. This suggests that EEG/MEG may contains ¢cegsary information to estimate deep
sources, which supports the claims of some authors in tHa (fieannides et al., 1995; Taylor et al.,
1999).

Additionally, the new algorithm will be extended to chastte the EEG/MEG signal not only in
terms of the anatomical localization of the sources withia brain but also in terms of its dynamic
frequency content. As it has been shown that several brgthmis can be associated to different normal
and pathological states (Bhattacharya, 2001; Strelets, @006; Whittington, 2008; D. Moretti, 2009)
it is important to find the neural populations responsiblahafiir generation to fully understand their
nature.



This manuscript is organized as follows. In chapter (2) amduction to the EEG/MEG is provided.
In chapter (3) the newly developed swLORETA inverse sotutivethod is introduced. In chapter (4)
its formulation is extended to the time-frequency spaces Wl allow characterizing the EEG/MEG
generators also in terms of their frequency dynamics. Iptig5) the time-frequency extension will be
used to characterize the large scale integration necefsgatye emergency of a unified cognitive brain
response. Conclusions and outlook are given in chapte{&).appendixes (A) and (B) give additional
mathematical details about the Tikhonov regularizatidreste and the Hilbert transform, respectively.

Some of the methods presented in this work have been puthlestebare part of a software package
named ASA (Advance Source Analys$ist p: / / ww. ant - neur 0. cont pr oduct s/ asa)widely
used for the neuroscientists community.


http://www.ant-neuro.com/products/asa




2

The I nverse Problem

The work of James Clerk Maxwell changed
the world forever.

Albert Einstein

2.1 Introduction

Neuroscientists are interested in explaining how the bisable to orchestrate the cognitive life. In other
words, how does it transforms an input signal, such as a lvidiimulus, into a flow of concatenated,
meaningful perceptions? One of the main aspects of such st ggidetermining which brain areas
generate the EEG/MEG signal recorded on the scalp in resgorasgiven stimulus. In other words, itis
important to find out the distribution of cerebral curreniiiges that best explain the scalp measurements.
Unfortunately, this is a difficult task and so it has beenezhlihe inverse problem. In the following
paragraphs, the main difficulties that the inverse problesep will be explained.

First of all, the inverse problem is ill posed because it do&shave a unique solution: radically
different source configurations may explain the data eguadll. This is due to the existence of silent
sources that cannot be measured on the scalp and to thepf@ioEsuperposition, which states that when
two or more sources are active simultaneously their meddigll is the vector sum of each individual
field. Additionally, the inverse problem is highly undereiehined because there is a limited amount of
sensors/electrodes that can be placed on the scalp andicallgenstable because of the presence of
noise.

To limit the space of possible solutions, additional infation or constrains about the physical and
mathematical properties of the current inside the head ta\e introduced. Dipolar methods, for
example, handle the many-to-one nature of the problem byactexizing the sources in terms of a
limited number of current dipoles that are fitted to the datimg some measure of the reconstruction
error. Although these methods have been widely used inpsyiléLantz et al., 1996; Ebersole and
Wade, 1990), and somatosensory research (Hoechstettey 20@l; Baumgartner et al., 1998) there
is a growing evidence that they may fail during complex ctigaitasks. In such situations, a wide
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6 Chapter 2. The Inverse Problem

spread neural networks at the base of the EEG/MEG geners¢iems a more plausible hypothesis.
For this reason, the distributed inverse methods will bentlagn focus of this thesis. These methods,
as their general name indicates, assume the existence igfeariamber of dipolar EEG/MEG sources
distributed over the entire brain. To estimate a uniquetgwluhey also introduce additional information
about some aspect of the primary current density (PCD) uingxample, the Bayesian framework or
equivalent via a regularization scheme (Tikhonov and Argel997; Tarantola, 1987; Mackay, 1992).

The first step towards the solution of the inverse probleno irnid a model that explain how the
current flow is related to the electrical potential on thelgaa the magnetic field measured above
the head. This task is often referred as the bioelectrontimgfoeward problem. This chapter will be
dedicated to review the forward problem and will provide th&thematical framework for the solution
of the inverse problem.

2.2 Quasistatic Approximation of Maxwell’s Equations

The Maxwell’s equations and the continuity equatidn-(J = —dp/0t J andp are the total current
density and the charge density, respectively) can be ussddolate the electric fiel and the magnetic
inductionB for a bioelectromagnetic signal, e.g. an electric geneiatthe brain, if the conductivity
and the source generators are known. Usually, for appdiesiin biomagnetism, Maxwell’s equations
are considerably simplified by doing two approximations.

The first approximation concerns the magnetic permeabhiliof the different tissues in the head,
which is approximately set to the permeability of free spa@e 1 = po = 47 x 10 H/m. Thereby,
Maxwell's equations take the form:

V-D = p (2.1)
0B

E = —— 2.2

V x r (2.2)
V-B = 0 (2.3)

oD
H = —. 2.4
V x J+ 5 (2.4)
If the material are consider to be linear and isotrojp)candB are defined by:

B = uH (2.5)

D = ¢E (2.6)

wheree is the permittivity of the medium.

In a passive non-magnetic medium, the current density vdatonsists of an ohmic volume current
j¥ = oE and a primary currenj” (see subsection 2.3). By substituting equation (2.5) ar®®) (&to
(2.4) it is obtained:



2.2. Quasistatic Approximation of Maxwell’'s Equations 7

V x B =g <jp—{—UE—|—e%—Et)>. (2.7)

If the bioelectromagnetic phenomena is considered at &mcyno (typically in the < 1000 Hz
range), the electrical field can be written as:

E = Eg exp(iwt),

and equation (2.7) can be restated as:

V x B = g (j° + cEg exp(iwt) + iewEq exp(iwt)) . (2.8)

The second approximation, the so called quasistatic appation, implies that theé)E /ot and
0B/t are ignored as source terms and only static field¥fandB are considered. Note that the time
derivate term in equation (2.7) should be smaller than thmiolturrent for this approximation to be
valid: ¢|0E/0t| < |oE. Equation (2.8) shows that this is the case provided< o. Using an average
conductivity ofo = 0.3Q'm~! for brain tissuee = 10°¢, and a frequency ofy = 27 f = 2007s~!
thenew/o ~ 1.8 x 1073 < 1.

In addition, it is possible to demonstrate that the contiitbuof 9B /0t to E in equation (2.2) is
small too. From equation (2.8) and considering fiat (V x E) = —9/0t(V x B) it is obtained,

V x (V x E) = —iwpg (0 + iwe) E. (2.9)

Solutions to this equation have spatial changes on the ciesistic length scale (Hamalainen et al.,
1993):
Ae = |wpgo (1 + iwe/a)| /2. (2.10)

With the parameters given above it is obtained= 65 m, which is much larger than the diameter
of the head. This implies that the contributiondd /0t to E is small.

In summary, the field do vary in time, but the time dependemitts ao distinct source term to the
right side of equation (2.2) and (2.4). Therefore, we carpfjnMaxwell’s equation into the quasistatic
form:

V-D = p (2.11)
VxE = 0 (2.12)
V-B = 0 (2.13)
VxH = J (2.14)

SinceV x E = 0, the electric field can be expressed with a scalar poteRtial — V'V, with V'
being the electric potential.
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2.3 Primary and Secondary Current

In the study of the bioelectromagnetic fields, the currentsdg J(r) at each positionr is usually
split into two contributions: the intracellular current\laand its accompanying extracellular current
(Hamalainen et al., 1993; Paul and Ramesh, 2006). Thiscilttdar current flow is the result of the
macroscopic electric field that acts on the charges cairighe surrounding tissues giving the so-called
volume curreng®. All other contributions to the current densilyare referred to as the primary current
jP. Since they represent the active origin of the neuromagfield as the primary source, the volume
or return current is passive. If the cellular level details meglected and the whole head is regarded as a
homogeneous conductor, then the current density can beemvas:

J(r) =j’(r) + o(r)E(r) = j*(r) + o(r)VV(r) (2.15)

Splitting the current density in this way, illustrates tletfthat the neural activity gives rise to pri-
mary current mainly in a given cell or its close surroundingdereas the volume current flows passively
everywhere in the medium. By finding the primary currenti{$, active brain sources can be located.

2.4 Forward Problem

Bioelectromagnetic fields are caused by electric current®inducting body tissues (e.g the brain, the
heart or muscles). The computation of the magnetic fieldngilie electric sources details (i.e., magni-
tude and position relative to the detector) is often retktoeas the bioelectromagnetic forward problem.
Using the above equations, the expression for calculatagjrecal potentiall” and the magnetic induc-
tion B at a pointr due to a current density existing atr’ can be derived. Such equations are referred
to as the Bio-Savart law or the continuous counterpart oAiin@ére-Laplace law (Landau and Lifshitz,
1962)and they provide solutions for the bioelectromagrfetivard problem,

o [JE) xR 5,

B(r) = v T m d°r (2.16)
_ 1 J(I‘/) ‘R 3.

Vi) = / G d’r (2.17)

whereR =r —r’ andR = ||r — r/|.

Equation (2.16) and (2.17) are derived from Maxwell's etqua(2.13) and (2.14) under the qua-
sistatic approximation. With a few simplifications (Haméén et al., 1993) and under the assumption
that the current density at approaches zero sufficiently fast wheémoes to infinity, it can be obtained:

V' x J(r'
B(r) = Z—i/T()d?’r' (2.18)

With (2.15) and the identity/ x (oV - V) = Vo x VV inserted in equation (2.18) then:
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Lo V' x () 5, Viex V'V 5,

While the first term of equation (2.19) is the direct conttiba of j”, the second term is due jb.
Note that there is no contribution from the second term, éciise of an infinite homogeneous conductor
(Vo = 0). With the identityVo x VV = —V x (VV - o) and a comparison of equations (2.16), (2.18)
and (2.19) it is obtained:

R
B(r) = Z—; / (P+VV'.0) x ﬁd?’r' (2.20)

Because the source of the magnetic field is the total curremsity J, both j» andoE contribute
to B. However, in equation (2.19E is replaced by an equivalent fictitious currén¥/ - ¢ which in
general has no direct physical meaning (Hamaléainen et293)1 By taking the divergence of (2.14)
and (2.15) it is obtained:

V- (oV V)=V (2.21)

Under the appropriate constraints, a solution fors possible (Hamalainen et al., 1993). Ufis
known, thenB can be calculated directly from equation (2.20).

2.5 Piecewise Homogeneous

If the conducting medium is considered as a piecewise honemyes conductor, theXo is non-zero
only at the boundaries and it is possible to expand the seeondin equation (2.20) as a sum of surface
integrals over the boundaries of all the discontinuities ¢Geselowitz, 1970; Hamalainen et al., 1993).

v Ho ou n V(I'/) n;-R
B'(r)=—"—=) (o7 -0} )/7}3; ds) (2.22)
Wherea§” anda;?“t are the conductivities inside and outside the conductifjgoblof the surface’;,
n is an outward unit vector normal to the surfage, anddS; a surface element. Analogous to equation
(2.22), the electrical potentidl® is given by (Geselowitz, 1967):
v 1 . ou in V(I‘/) n;-R
Vi) =——> (07" =0 / — A8 (2.23)

4o 4
J=1

whereo denotes the electrical conductivity of the medium surrdogd.

In the calculation of the magnetic field described in equef®.22), the volume currents can be
replaced by an equivalent surface current distribuﬂoﬁ - o—JO.“t)V(r’)ﬁj(r’) on the boundaries of
S; and are often termed asécondary currents The above expressions show how secondary sources
contribute to the magnetic field and to the electrical péaknihe fact that the direction of secondary
currents is perpendicular to the boundary between medidffefeht conductivities, explains why the
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contribution to the field is only tangential to the undenaysurface and hence the radial component of
the magnetic field is not affected by secondary currentseiGavspherically symmetric conductor, the
corresponding secondary sources are distributed acressptierical surface with the current pointing
everywhere in the radial direction. The field is conseqyeetierywhere tangential to the sphere and
hence measurements to the component of the fields that arehtar the surface provide information
about the primary source alone (Hamaldinen et al., 1993).

2.6 TheEquivalent Current Dipole Modd

The Equivalent Current Dipole Model (ECD) can be used as plsimodel to describe the relationship
between neural activity and the generated electrical arghstee field. It is used to approximate the
flow of electrical current in a small area of interest. Forragi@ current dipol& , the map of the radial
magnetic fieldB,. has one maximum and one minimum. The dipole, which lies feifetween the
extrema, can be thought of as a short current elemhewith the lengthl and negligible cross-section.
This vector is fully characterized by its position and ot#&ion in space. The dipole mome®, is
defined a9Q = I - I, with the units Am. A typical strength of a dipole, caused pgchronous activity
of probably tens of thousands of neurons]l@snAm. If current dipole model is used to describe the
electrical properties of biological sources, then it hasedaken into account that the description is only
adequate when a small region of active tissue, i.e. wheréatbest linear dimension of the region is
much smaller than its distance to the measuring point, isidened.

In the previous section, it was shown that the magnetic itidiud and the electrical potentidl
are given by equations (2.16) and (2.17).

Considering a more general case with a distribution of prinwarrent density (PCDj? over a
certain brain volume, a current dipole can be thought of amaentration of?(r) to a single poinig:

J(r) = Qi(r —rq) (2.24)

whered(r — rq) is the Dirac delta function.
The integral of the time-delayed Dirac’s delta functioniigeg by:

[ 5098 oy = 1) (2.25)

By using equations (2.24) and (2.16) the resulting magtiietid B for the primary current density
generated by a dipolar source is given by the well-known-Batart law:

~ 1o Qrg) X Ry

B(r) = 47 R%

(2.26)

whereRg = r—rg andRg = |[r — rg||. Vectorsrq andr represent the position where the current
dipole Q is located and the point where the magnetic field is evalyatsgectively. A similar relation
can be found for the electrical potentidlusing equation (2.17).
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Since a point like source is magnetically silent (ho magnsijnals is produced) it is sometimes
convenient to conside as an infinitesimal line element (ILE) of currehpumped from a sink at; to
a sourcer, With a very small source-sink separation.

A single post-synaptic activity at a dendrite of a pyramidell has typically a dipole strength of
aboutQ ~ 3 x 10~!3 Am (Williamson and Kaufmann, 1990). Thus, for a single pyraahikll, which
may be4 cm from a detector and using equation (2.24), the above digoémgth will produce such
a weak magnetic field~ 2 x 1077 T) that it is not detectable outside the head. But since there
are approximatelyl0® pyramidal cells pemm? of cortex with hundreds or thousands of synapses per
neuron, the resulting magnetic field can be detected. Asgutmatn current dipoles are operating
simultaneously and pointing in the same direction the mégfield B can be expressed by the vector
sum of all single fields:

A magnetic field ofl00 {T, which is about the order of a typical response to a stinutatiequires
more than5000 neurons simultaneously active. If the locations of thevactiurrent dipoles are close
together, say within a few cubic millimeters, it can be cdestd that the magnetic field (or strictly
speaking, the magnetic inductiol is generated by only one equivalent current dipole. However
it has to be taken into account that the bigger the area isled®accurate is the description of the
biological activity provided by the ECD model (Hamalaingrak, 1993; Hamaéalainen and limoniemi,
1994). Nevertheless, as long as the activity is generatddnaone or two well-separated small regions
the ECD model is satisfactory.

In summary, the equivalent current dipole model considaeean ILE is widely used as the simplest
model to describe the unidirectional primary current dgnisi a few cubic centimeters of an active
brain.

2.7 Lead Fields

In previous sections it has been shown that there is a limdation between B related to the PCD. Thus,
for each detector the output of a magnetomet®; can be expressed as a linear function of the form:

B, = /Q k;(r) - j7(r)d>r. (2.28)

with the vector fieldk;(r) playing the role of the kernel. This vector fiellt;(r)) describes the
sensitivity distribution of each sensor and depends on dinelwctivity o and on the coil configuration
of the magnetometer or gradiometer system (Sarvas, 198nalinen et al., 1993; Hamalainen and
lImoniemi, 1994). The integral in equation (2.28) extendsroa finite volume (often called the
source space) where the current distribution is believdié to

By analogy with equation (2.28), the lead fi&dff of an electric measurement is given by:
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V; = / kZ(r) - j?(r)d%r. (2.29)
Q

with V; being the potential difference between itteelectrode and a reference electrode.
Assuming the ECD model for the PCD, the magnetic field can b&imdd by substituting equation
(2.24) in (2.28) as:
B; =k;(rg) - Q.

Using this equation the three components of the lead fieldxrlat(r) can be found for any dipole
positionrg as long as the magnetic fiel; is provided. Furthermore if the PCD is modelled as a
superposition of,, simultaneous ECD then the magnetic field takes the form:

g
B; =) ki(rj) Qi (2.30)
j=1
Using equation (2.30) we can define simultaneous equations for the sensors output as:

B = KQ (2.31)

whereK is ann, x 3n, matrix with the elemenk;; as the lead field vector for théh sensor due to
the jth dipole,

kii kip Kin,
K — ko1 koo ko .n,
kns,l kns,2 o kns,ng

VectorQ is ordered in blocks so that all three spatial componentsspgaific dipole appear directly
one after the other in the form:

Qp: ("'an,xa Z,y> Z7Z>'°°)Ta

T represents vector transpod®.is ann, dimension vector built from th8; in each sensors in the
same way as).

If the source space is further discretized into a grid withvolume elements, the average primary
current densityj? in voxel V}, is intertwined with the current dipole in this voxel by:

Qi = AV

Given this relation and considering equation (2.31), atimiabetween the PCD and the magnetic
field can be obtained as :
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B = Kj". (2.32)

An expression equivalent to (2.32) can be found for the etedtcase. In this case, the vector that
represents the potential difference betweenitheslectrode and a reference electrode plays the role of
B; while K¥ plays the role ofK. Since the form of equation (2.32) is the same for both thenatigy
and electric cases in the next chapters they will not be eiglidifferentiated. Thud andd will be
used to refer to the lead field matrix and the EEG/MEG signelorerespectively. In the same way, the
superscripp in the notation of the PCD will be drooped. With this notatranges equation (2.32) can
be rewritten as:

d=Kj+n (2.33)

wheren is n, dimensional vector that represents the additive instruahemise that affects the
signal recorded in the sensors.
Using the above formulation, the following lead field chaggistics can be illustrated:

1. they are vector quantities that reflects the sensitivitfile of each sensor;
2. they are affected by the relative location of the sourees@nd the detection coil;

3. they are influenced by the conductivity profile and, hedd&rent conductor models will corre-
spond to different lead field patterns. It is worth notingttth@ expansion functions automatically
exclude any contribution from magnetically silent sources

4. since the expansion functioks(r) are completely determined by the geometric details of the
sensors for a given source type, the lead field only need taloelated once for each sensor
arrangement.






3

Formulation of swL ORETA in the time domain

Our mind is capable of passing beyond the
dividing line we have drawn for it. Beyond
the pairs of opposites of which the world
consists, other, new insights begin.

Hermann Hesse

3.1 Introduction

As explained in section (1) several methods have been deelo order to determine the neural gener-
ators of the EEG/MEG signal recorded on the scalp. One oéthethods, SLORETA, was introduced
by Pascual Marqui in 2002. Due to its accurate tomograplopgaties, e.g. zero-localization error for
single dipoles in noiseless simulated data (Pascual-Ma2@02; Wagner et al., 2004), it has rapidly
grown in popularity among EEG/MEG researchers. Howeveisib has some limitations: its spatial
resolution is limited in the presence of noise and when tvypoldis are active simultaneously (Pascual-
Marqui, 2002; Wagner et al., 2004).

In order to overcome those limitations, it is presented leerew algorithm named Standardized
Weighted Low Resolution Tomography (SWLORETA). In contriassLORETA, swLORETA incorpo-
rates a singular value decomposition (SVD) based lead fieldhing to compensate the tendency of
the linear inverse procedures in general, and SLORETA itiqodatr, to reconstruct the sources close to
the location of the sensors. The sensitivity of the solutmithe presence of noise is also decreased.
As a consequence, sSWLORETA is superior to SLORETA partibulander noisy conditions and for the
reconstruction of deep sources.

The first part of this chapter will be devoted to the matheoahfoundations of the Minimum Norm
(MN) method (section (3.2)), the basis of SLORETA and swLAREThen, sLORETA will be pre-
sented in section (3.3). Finally swLORETA will be develogedction (3.4)) and its tomographic prop-
erties will be demonstrated using simulated (section Y&B)l experimental data (section (3.6)).

15
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3.2 TheMinimum-Norm Inverse Solution

MN, as well as all distributed source localization methastdye equation (3.23) assuming that there
is a large number of dipolar sources distributed over thenk{ra, > n,). Different procedures have
been proposed to place these dipolar sources inside thedepending on the anatomical information
available. Usually, this dipolar sources are positionedoton a 3D grid of points inside the head.
Furthermore, if an MRI images is at hand, this grid is placedaregistration with it. Additional
information can be used to further restrict the space ofiplessolutions by assuming that the EEG/MEG
signal can only be generated within the gray matter. Thuly, the points that belong to it are used as
part of the source space. Other authors also assume thaEtB&VEEG sources are perpendicular to the
cortex surface that is represented by the white/gray matterface(Dale and Sereno, 1993). This last
constrain will not be considered here.

Due to the assumption about the amount of possible gengnatooduced by the MN method, the
lead field matrixK rank is less thardn,, therefore equation (2.32) has an infinite number of solu-
tions (the ill-posedness property of the bioelectromagrieterse problem (Helmholtz, 1853)). Conse-
guently, to compute a unique solution additional knowledbeut the current sources inside the head,
besides the anatomical constraints already explaine@, tioave introduced. In this thesis, the Bayesian
framework to incorporate such priors information and the Ri@naximuma posterior) principle to
select the “best estimate” for the PGvill be used.

A Bayesian model is defined by its functional form, which igegi by equation (2.32), and by two
probability distributions: a prior distributiop (j | 3) that summarizes our initial state of knowledge
about the mathematical and anatomical propertieg ford the likelihoodp (d | j, A), which states the
prediction the theoretical model makes about the datdoen the parameter vector has a particular value
j (Tan and Fox, 2001; Mackay, 1992). An expression for thegomstdistribution can then be found
using the Bayes rule (Mackay, 1992; Tan and Fox, 2001):

p(d|3,N) p(|5)

p(d|A,B)
where\ and 3 are named hyperparameters and express the degree of urigestzout the priors as-
sumptions and the predictions, respectively; both paramet supposedly knownp(d |\, 5) is a
normalization constant called the evidence foand 5 that is ignored because it is irrelevant for the
inference ofj.

p(ld, A 08) = (3.1)

The likelihoodp (d | j, A) is defined by making assumptions about the statistical ptiegeof the
experimental noisa in equation (2.32). A typical assumption is that the sensisencan be expressed
in term of a multivariate Gaussian distribution with zeroam@nd covariance matrix:

Ed,noise = (1/)\) Ins (32)

wherel,,, is the identity matrix of sizevs, 1/v/) is the standard deviation of the noise. Therefore,
the likelihood function can be written as:
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p(d |.]7 )‘) = p(n =d - K.] | )\) = an(Kj> 23d,noise)> (33)

whereN,, (1, X) is then dimensional Gaussian distribution of arsize random vectax, mean vector
1 andn x n covariance matrix:,

1 1 _
Na(p, 2) = (22 2 exp <—§(X — )T (x - M)) : (3.4)

On the other hand, assuming that the PCD follows a Gaussribdition with zero mean and
covariance matrix:

35 = (1/58) Isn, (3.5)

wherels,, is the identity matrix of size3n, x 3n, denotes the choice of the mathematical and
anatomical constrains arfd denotes matrix transpose. Under this ansatz the prioilaison can be
expressed as:

p([B) = Nap, (0, %) (3.6)

Substituting equations (3.3) and (3.6) in equation (3.&)bsterior probability is given by:

pilaA8) o (5 (@K@K + 5575} ) @7

o (—5 (M=K + 1P} ) @9

where||x||2 represents the square of the Frobenius’ 2-norm givefwily = Trace(x”x).

To find the “best linear unbiased estimate” the posteriobabdity given by equation (3.8) with
respect tg has to be maximized. This is is equivalent to minimize thefiom:

F(d;j) = -—2log(p(ild,A B)) (3.9)
= MNd-KjT(d-Kj)+ i)+ const (3.10)

The problem of finding can then be formally written as
j = argmin{F(d;j)} (3.11)
j

= argmin {A|d — Kj||* + 3 |j||* + const} (3.12)
i

This problem is equivalent to thigkhonov regularizationechnique according to the general scheme
of balancing between trust in the data and fidelity to pridigi{onov and Arsenin, 1997; Tarantola,
1987).
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A formal solution to this problem for given values ®f 3, K andd may readily be found by setting:

0 . . T,
% {A(d-Kj)"(d-Kj)+8jj} =0 (3.13)
wherejy is thekth component of andk = 1,2,...,3ng. This leads to the following equation for

the estimator of (see Appendix (A)):
j(a) = (K™K + oI,,) ' K"d (3.14)
or equivalently (see Appendix (A)),

jl@) = KT(KKT 4 al,,,)"'d =: T(a)d (3.15)

wherel,,, is the identity matrix of dimensions x ns; and« is a non-negative number called the
regularization parameter which is definedas= 3/\.

3.2.1 Generalized Cross Validations

In the previous section the equation (3.15), which provaléieear mapping between the data veelor
and the PC[Jj given the lead field matri¥X, was derived. In order for this map to be completely defined
the value of the regularization parametemwhich is assumed to be known, has to be provided. Several
methods have been proposed in order to obtain this pargmetér-curve” (Tan and Fox, 2001). Here
the generalized cross-validation (GCV) method (Golub et1&l79) will be used. The GCV estimate of

a is the minimizer of the generalized cross-validation e(6fV E(«) given by:

Ns

GCVE(a) = niz (d — (Kigg),) o) (3.16)

where (Kj[l-])i is theith component of vectoKjj; andjj; is the PCD obtained with thih data
point omitted given by:
-1
: T T
.][z] = K[z] (KMK[z] + OéIns> d[z],

with K{;; anddy; obtained from matridK and vectord obtained by removing itéth row andith
component, respectively(«) is given by:

1— Akk(a)
— 1Trace(A(a))

wg(a) =

whereA (o) = K (K”K + al3,,) K7,

In a nutshell, the generalized cross-validation error @efim equation (3.16) measures the weight-
ing mean squared difference between the actual output afttfdetector and its predicted output. Such
predicted output is obtained from a PCD that have been @amlibfter removing the contribution of the
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detector under analysis. The resulting valuexdadfter generalized cross-validation is given by taking
the derivative ofGC'V E(«) with respect tax and setting it to zero.

3.3 Standardized Low Resolution Electromagnetic Tomography

The sLORETA method computes a statistical map by perforraif@cation-wise inverse weighting of
the MN inverse solution results with their estimated varémn By applying this normalization statistical
parametric maps (SPMs) are obtained. Those maps providariafion about the statistical reliability
of the estimated PCD distribution at each brain point ovaetith millisecond accuracy.

Mathematically, the starting point of SLORETA is the PCDudimition obtained by equation (3.15).
The task now is to compute the standard deviation of the PQieimorm the aforementioned normaliza-
tion. Taking into account the linear relation in equatiorB@ and the independence between the noise
and the PCD, the covariance of the magnetic fiiix can be written as (for details see Mardia et al.,
1979):

a = KSK" + Bd noise (3.17)

which under the assumptions given by equations (3.2) ail {@es the form:

¥4 = KK” +al,, (3.18)

From equation (3.18) and making use of the linear relatioegumation (3.15), the covariance of the
estimates PCD is given hy:

3 = T(a) 24T ()" = KN (KK" +al,,) 'K (3.19)

Finally, the SLORETA solution (Pascual-Marqui, 2002) isadbed from equations (3.19) and (3.15)
in the following way:

jszorETAL = {[23] ”}1/231 = {[23] ”}1/2 T,d (3.20)

wherestORETA’l is a 3-dimensional vector corresponding to the PCD at va@:j] , isa3 x 3

matrix given by thelth diagonal block of the matrix in equation (3.19),is a 3-dimensional vector
corresponding to the MN solution at voXelandT; is the3 x ns submatrix ofT'(«) belonging to voxel
l.

—1/2
Equation (3.20) is well defined in the sense that the m%{rﬁj] ”} / can always be obtained.

For this, an SVD of[zj] y can be used to compute the inverse square roots of the norsirgyular
values (Wagner, 1998).
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3.4 Standardized Weighted Low Resolution Electromagnetic Tomogra-
phy

The MN method is known to lead to superficial source distiimg. This bias towards superficial
currents is associated to the attenuation of the MEG and Egftals with increasing source distance
to the electrodes and follows from equations (2.16) and7§2.This problem is clearly illustrated by
equation (3.12) which is a minimizer of a cost function cosgub of a least-square error and a penalty
term that is a norm of the currents. This minimization preosdl bias the solution towards one which
minimizes the norm, whereas the bias would normally be td&/aminimizing the error (whem or
equivalentae = 0). If two different PCD distributions can produce the samegnaic field signals
(within a level of accuracy given by the regularization paeter), then the one in which the current
sources are deep within the brain will require strongercito do so (see equation (2.16) and (2.17)).
Thus, the solution with sources closer to the surface wikeha smaller norm and consequently will
be favored. To compensate for this effect and ensure thate®are likely to influence the EEG/MEG
equally at the electrodes irrespective of their depth, deepces are givea priori covariance larger
than the covariance given to the superficial ones. Severtlads have been proposed to generate the
corresponding covariance matrix. One of them indexes tipehdiey the norm of the lead field for
each source and the covariance component of this conssalefined as 8ng x 3ng diagonal matrix

¥ = (diag (KTK))*1 (loannides et al., 1990; Grave de Peralta Menendez and @Ganaadino,
1998.).

For our new approach, swLORETA, we need to perform a nora@diza that compensates for the
varying sensitivity of the sensors to current sources & it depths. For each current source location
[, there are three columns in the lead field makixhat corresponds to the three components at that
position. These three columns describe how the measuretmie@imagnetic fields at each sensor depend
on the current sources at locatibnTherefore, a normalization which compensates for this faast
estimate the relative sensitivity and modify the corresjiog columns ofK to make the sensitivities
equal for alll (Kohler et al., 1996; Fuchs et al., 1999).

To this end, an SVD is performed on the three columns of the fiedd matrix that corresponds to
position/. This SVD factors the submatrix as follows:

K, = U,V (3.21)

The orthogonal matricetl; and 'V, represent rotations to a coordinate system which diagmesli
K;. Thus, the matrix; contains only three diagonal elements, which are the simgudlues ofK;
(éf d = 1,2,3) and represents the system sensitivity at véxéirom these singular values the PCD
covariance matrixX;) can be constructed as follows:

s 12 =512 g1, (3.22)
J

where® denotes the Kronecker tensor proddgtjs the identity3 x 3 matrix, ands is a diagonal
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ng X ng matrix with diagonal elemeny; be the maximum sensitivity at voxgli.e. s; is the maximum
of the diagonal elements &f; (s; = maxzz1 é;i) forl =1,...,n4.

Taking the covariance matrix in this fofiyis equivalent to rewrite equation (3.23) as:

d= (K 2J-1/2) (zzj*l/?j) tn (3.23)

where the new unknown variablé]fl/ %) have the identity matrix as its variance. Using the nor-

malized lead field& = K Zjl/Qas the lead field matriK in equations (3.15)—(3.19) a “pre-standardized”
PCD can be obtained from equation (3.20) as (Pascual-MagQR):

< 1/2 4
i=5%; / JsLORETA (3.24)

3.5 Analysisof Simulated Data

3.5.1 Description of the Simulations

In this section, the results of a study carried out to testan@ographic properties of the swLORETA
approach and to compare it to the SLORETA method will be priese For this analysis simulated MEG
data was used.

The head-sensor arrangement was taken from a real expé@meithe spatial setup of the sensors
corresponded to the configuration of the magnetometers D Alduroimaging MAGNES 2500 WH
system: 148 magnetometers arranged in an array uniforratyilited (mean inter-channel spacing of
2.9cm). The head was modeled as a spherical, radial symmetnductor (Hamalainen et al., 1993),
that was used to calculate the lead field with the aid of theg@agquation (Sarvas, 1987). An equivalent
dipoles model was chosen to simulate the MEG signal. A 3Dwasd then fitted to the back of the brain
where each point represented an equivalent dipole thatl¢mue generated the MEG signals. A total
of 9 x 17 x 17 = 2601 points was used with a minimum distance7df mm in thez-axis and8.7 mm
in y-axis andz axis. The origin of the coordinate system was the meetingt@itween the-direction
through the nasion to inion and theaxis through the left to the right ear; theaxis was the axis
pointing upward (to the vertex of the head). The 3D grid wathfr clipped by the grey and white
matters. Consequently, only 1281 voxels of the total amofinbxels were finally located inside the
source space. Due to the location of the source space, amlgQtsensors placed in the back of the
helmet were selected for the simulations as shown in figug.(Finally, the radial component of all
simulated dipoles was removed before calculating the fadwalution because it is silent in the selected
head model (Sarvas, 1987).

"Note that this approach can be applied to prigr covariance matrix for the PCI3J;), as long as it is positive definite,
and there exists a meaningful decompositions of the form:

- (57 ()
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Figure 3.1: Sensor configuration.

3.5.2 Measuresto Characterizethe M ethods

In the case of single dipole simulations, the following threeasures were chosen to evaluate the prop-
erties of the inverse algorithms.

1. Localization error it was defined as the Euclidean distance between the maxiofitime current
distribution and the position of the simulated dipeie

2. Activation volumeit was calculated by counting all voxels with strength ab68% of the max-
imum PCD distribution and then dividing that number by th@lteolume of the source space.
Finally, this magnitude was expressed in percentage. Ttaéwolume of the source space was
defined as the volume of a single vox&l{mm x 8.7mm x 8.7 mm = 590.382 mm?) multiplied
by the total number of voxels inside the source space (1281).

3. Activation probability it counted how many times the simulated dipole positionctiva with a
value greater than th&% of the maximum PCD distribution and divided this value by tibigl
number of realizations (300 noise realizations are peréariior each dipole position (see section
(3.5.3))). The selection of regions of interest accordimghe amount of voxels where the PCD
lies above a particular threshold has been used often inesgrriments (Alonso-Prieto et al.,
2007; Barnikol et al., 2006).

In the case of two dipole simulations a measure natagdraged activity deviatior{d’)” is introduced
to account for the localization error and the spread of thienesed PCD:

1
n . . 2 2
g — [ 2 HJZ‘HIH;?RJEHI%_I'Z‘H AN (3.25)
22 el
wherei = 1,...,n, is the number of voxels in the source spageijs the position of the original

dipoles,j; andr; represents the estimated PCD and the center of the positieoxel i, respectively.
Furthermore, values between 0 and 1 were normalized via

d/

dm ax

d= (3.26)

whered,,.« is the maximum possible value faf. This corresponds to the current source being a
d-function located at the furthest possible voxel location.
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Figure 3.2: Localization error of both methods for singlatistdipole simulations. The eccentricity is
first normalized to the head radius, measured horizontédggathez-axis and then expressed in % .
Different SNR levels are tested. The error bars indicatestaedard deviation of the localization error.
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Figure 3.3: Activation probability for the swLORETA and sREBTA methods versus eccentricity.

3.5.3 SingleDipole Smulations

In this section, the tomographic properties of sSwWLORETA b illustrated using single dipole simula-
tions.

A static dipole was simulated nine times along thexis through the center of the source space
while thex coordinate of the test dipole varied fror89 mm to —101.2 mm. They andz coordinates
were fixed a mm and15 mm, respectively. For each given dipole position, the @éipeas oriented in
either they or z direction. The strength of the dipoles was normalized totérakmoving the radial
component. Gaussian white noise with zero mean and staddsiation given by the desired signal-to-
noise-ratio (SNR) was added to each detector after the fdra@lution. The SNR was defined as the
maximal magnetic flux over all detectors divided by the staddleviation of the noise. Four different
levels of noise were analyzed and 300 noise realizationsdoh dipole position were used to estimate
the mean and standard error. The three measures describedtion (3.5.2) were calculated for each
of the nine dipoles withy or = orientations and then the result of each measure was adeozge both

orientations (figures (3.2-3.4)).
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Figure 3.4: Activation volume measured using a threshole08b of the maximum versus eccentricity.

The localization error of both methods is shown in figure X345 expected, for both methods the
localization error decreased as the eccentricity incaebaeswLORETA presented the best performance
for all eccentricity and SNR values. Especially, note thatdifferences between both methods increased
when the SNR decreased and the swLORETA localization eragralwvays the smallest. This tendency
was especially marked for deep sources.

On the other hand, the activation probability index was gbwamaximal in the case of SwWLORETA
except for the lowest value of SNR and eccentricity (figur@))3 In contrast, for SLORETA it was
maximal only for eccentricities above 50% while for deeprses it drops to zero. This result was true
despite the fact that the activation volume of swLORETA wamler than the activation volume of
sLORETA in all simulated conditions (figures (3.4) and (3.9)hese findings demonstrated the ability
of swLORETA to focus the reconstructed PCD around the trigitipa of the dipole.

When a single dipole was placed in all possible position®miag to the source space used and
with orientationsz, y and z, the tomographic properties of sSwLORETA remained bettanttihose of
SLORETA (figure (3.6)).

3.5.4 Two Dipoles Simulations

In a second step a 2-dipole configuration set that consisisvelral two-dipole arrangements was imple-
mented. The new arrangements differ only with respect tio plesitions and mutual orientations. Thus,
the z-component of all dipole positions was fixed 15 mm), the superficial position of dipole no. 2
in the right hemisphere remained the same through all caafigms ¢ = —93 mm andy = 44 mm)
and current dipole no. 1 approached dipole no. 2 from thehkaftisphere and stayed superficial in all
settings.

Parallel and orthogonal relative orientations of the digdfigure (3.7)) were tested. In parallel con-
figurations, both dipoles were arranged in a line parall¢h&y-axis. In the orthogonal configurations,
one dipole was oriented along thexis, and the other along theaxis. The averaged activity deviation
index was used to characterize the properties of both method
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A)

C)

Figure 3.5: A) and C) show the reconstructed current sougasities for two different simulated dipole
positions using the sSLORETA method. B) and D) show the swLOREolution for the same two
configurations. The arrows indicate the positions of thgioal dipoles. A SNR = 6 was used for this
simulation. As can been seen for this figure, the activityre of SWLORETA method is smaller than
the activity volume of SLORETA method. The cursor represéné location of the maximum PCD.
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Figure 3.6: Localization error and angle difference avedagcross different positions and orientations
of a static dipole versus SNR for both methods.

Figure 3.7: Orthogonal configurations: Dipole no. 2 indechby a black spot does not change its
position between the configurations whereas the otheraipa@pproaching. Each colored spot at dipole
no. 1 describes a different configuration.
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Figure 3.8: Averaged activity deviation versus the dipasathces for different SNR and relative dipole
orientations.
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As can be seen in figure (3.8), both methods showed the samenigyn for a given angle value (0
or 90), the activation deviation index exhibited the sanaasfor different SNR but all values obtained
when angle = 0 were higher than those obtained when angle Adifitionally, the activation deviation
values decreased when the distance between both dipoteaged. On the other hand, the swLORETA
activation deviation index was always smaller than thatt@RETA. These results suggested that the
spatial resolution of sSWLORETA is higher than that of the &EYA in the presence of two dipoles
simultaneously active.

Both methods were able to separate the sources when thasesetere distant, equally superficial
or had an antiparallel orientation. It is important to ndtattthe methods were able to separate parallel
sources only when they were very distant. It is also worth tioamg that the swLORETA method
separated sources for the antiparallel better than the 8T@Rnethod (figure (3.9).

Figure 3.9: Current source reconstruction for nearby andifel sources using both sLORETA and

SWLORETA. The swLORETA reconstruction (left) is able totifiguish the two sources clearly. The

sLORETA reconstruction (right) is much less clearly sefgtaThe sources are both equally superficial,
and are located 35mm apart. The cursor represents thedoaitthe maximum PCD. (SNR 6).

3.6 Analysisof Experimental Data

In order to test the applicability of swLORETA inverse aligfom under real-life circumstances, a clas-
sical visual spatial attention experiment was designedaaiadl/zed. This kind of experiments addresses
the attentional mechanisms involved in the selection @wvaeit information at multiple stages of visual
processing. It was selected because the time course ofiati@reffect as well as the brain regions as-
sociated to it have been studied extensively. Consequénigypossible to elaborate a precise working
hypothesis about the active source. The next paragraphsatires the findings reported in the spatial
attention literature.

In a typical spatial attention task two conditions are coragaan attended condition, in which sub-
jects focus attention on visual stimuli placed in attendmzhtions of the visual field; and an unattended
condition, in which similar stimulation environment is pemt but subjects focus attention elsewhere in
the visual field. The paradigmatic finding is that the pericepand discrimination of the stimuli placed
in the attended location is significantly facilitated (Luskal., 1996, 1997; Martinez et al., 1999, 2001,
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2007). EEG/MEG studies have demonstrated that this fatbiit occurs within the first 100 ms after
stimuli presentation and remains until abd8d ms since the amplitude of both the FRD (— 120 ms)
and N1 componentsl40 — 180 ms) is higher for the attended conditions especially overpibsterior
scalp (Luck et al., 1996; Martinez et al., 1999, 2001, 2007 neural generators of those attention sen-
sitive components have been determined using dipole atribdied source modeling methods as well
as co-registration with PET and fMRI. Most of the studiesatlecthe neural generators of P1 component
in mid occipital regions around V3/V3a, the immediatelyeaitr middle occipital gyrus, the ventral
occipital cortex around V4 and the fusiform gyrus (Luck et &4097). Usually, the highest activation
is found in the hemisphere contralateral to the attendashl/ifield. The N1 attention effect has been
associated to the activation of parietal, ventral ocdigpéenporal and frontal areas (Russo et al., 2002,
2003). Recordings of single unit activity in monkeys (Ludkag, 1996, 1997; Martinez et al., 1999,
2001, 2007) and fMRI studies in humans (Martinez et al., 20999) have confirmed the involvement
of extrastriate visual areas V2, V3a, V4, MT, the inferotemgb cortex and the posterior parietal cortex

3.6.1 Materialsand Methods
Subjects

Twelve right handed subjects (all females, mean 2@e- 6 years), who had normal or corrected to
normal vision, participated in the study after giving thiefiormed consent. All subjects were healthy
and had no signs of neurological or psychological impaitsierThe study was in accordance with
the Declaration of Helsinki and the Institutional Comngtten Human Research of the University of
limeanu where the data was registered.

Stimuli and procedure

The stimulus consisted of a rectangular black and whiteldrbeoard (angular siz€5.5°) of 25 rect-
angles (angular size of each rectangded1°, Michelson’s contrast: 50%) and a black arrow (angular
size: 1.7°). It was placed at the horizontal meridian: the arrow wasgdain the center of the screen
and the stimulus either in the left or right visual hemifiellisance between arrow and checkerboard:
1cm) (figure (3.10)). It was displayed on a white backgroundcfidison’s contrast between stimu-
lus and background: 50%), generated using an LCD Samsunganémefreshing rate:60 Hz, mean
brightness:300 cd/n?) and presented to both eyes. The colors of the checkerboarel neversed in a
counterphase square wave temporal pattefin6atHz (1 contrast reversal eve§00 ms). The interval
inter-stimulus was a random value betwed® and500 ms (figure (3.10)). Subjects were comfortably
seated in front of the monitor and they were instructed tatditae arrow through out the experiment
while attending to the visual hemifield it pointed to. Theylha press a key when they detected that the
white checks turned gray. Eight blocks1df0 trials each were presented. Within a block the arrow was
always pointing to the same hemifield and targets had a 20¥ceha be presented. From the remain-
ing 80% standard trials, 40% was presented in the attendedfibkel. Task requirements concerned
with working memory load and attention shifting, which abyotentially confound the interpretation
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\ e Unattended
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Figure 3.10: Experimental stimuli and design. See textdaher details.

of spatial attention effects, were controlled. Thus, sciigjevere instructed that the cue (central arrow)
was going to be pointing always to the same hemifield withitoakh Furthermore, cue and stimulus
were always presented together. Consequently, subjeetsmegther to hold the spatial information in
working memory nor to shift attention to other locationshinta block (except for the first trial of each
block which was disregarded from the analysis). Moreowgdts were presented only to maintain a
proper level in subjects’ attention and motivation durihg task but they were not included in the anal-
ysis. Instead, only standard attended and unattendedlistiene analyzed In this way, it was avoided
possible confounds with brain functions related to targetessing and motor response.

Electrophysiological recording

The EEG analog signal was recorded continuously fi@nscalp sites using the A.N.T. (A.N.T., En-
schede, The Netherlands) amplifier (ga86000) and62 Ag-AgCl electrodes mounted on a WaveGuard
cap according to thé0 — 5 electrode system. The impedance of all electrodes wal) k() at the
beginning of the experiment. EEG was recorded usifg)a — 200 Hz bandpass filter and the signals
were sampled &12 Hz. All recordings were referenced to linked mastoids aed tverage-referenced
off-line.

Data processing

The raw data waveforms were high-pass filtered by convolthiegn with a 4th order Butterworth filter
with half power cutt-off ofl Hz. We also applied a Notch filter centereds@Hz. Eye movements were
corrected using a spatial filtering method based on presti@heapproach (llle et al., 2002). In addition,
remaining artifacts exceedingt75 ¢V in any channel were rejected. Artifact free data was didide
into epochs ranging from 200 ms to800 ms after stimulus onset for both the standard attended &nd th
standard unattended conditions. Then, for each trial lip@seorrection was applied by subtracting from
the post-stimulus interval the mean amplitude of the pratdus interval betweef00 ms and100 ms.

ERP analysis

The selected epochs were averaged and then ERP amplitugisiamaas performed in order to confirm
that the experimental design elicited the P1 and N1 attergftect described in the literature and thus
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validate the application of the inverse method. For eaclestland experimental condition P1 and N1
components were defined as the most positive and negatilts {ied appeared betwegd— 120 ms and
140—180 ms, respectively (Martinez et al., 2007). The right andé&dttrodes where ERPs were largest
were identified among a group ®2 posterior electrode sites in each hemisphere (Cpl-Cp2,Cpd3
Cp5-Cp6, Tp7-Tp8, P1-P2, P3-P4, P5-P6, P7-P8, PO3-PO4F@B5 PO7-PO8, 01-02). Then, the
corresponding amplitude values were submitted to stedistinalysis. To this end, Friedman ANOVA
test p < 0.05) was used and, if the test results were significant, planoatparisons were made using
the Wilcoxon Matched Pairs Tegt & 0.05; Bonferroni corrected for multiple comparisons).

Source analysis

Afterwards, brain sources of P1 and N1 components were raddeding swLORETA. To this end,
the grand averaged waveforms were first obtained for eactiitcmm separately and then two analysis
windows 80 — 120 ms and140 — 180 ms) were determined. Finally, swLORETA was applied. In orde
to confirm the obtained results, the analysis was repeateghfth subject as well. Regions of interests
were selected by applying a 65% cut off threshold to the atitim strength of the sources at the time
of the peak. Note that difference waves were not used anedidghe reconstruction on each condition
was performed separately. This was done to avoid possibeeods in P1 and N1 components latency
and amplitude which in turn may affect the source localmatinalysis.

3.6.2 Results
ERP results

As in previous studies P1 and N1 components increased tmgilitade during the attended condition.
Friedman ANOVA analysis demonstrated that the differeruetsveen attended and unattended con-
ditions were significant for the P> = 62.03; df = 7; p < 0.00) and for the N1 components
(Chi? = 41.28; df = 7, p < 0.00). Planned comparisons using Wilcoxon Matched Pair Tesh{Bo
ferroni corrected) showed that the P1 attention effect wasgnt only in the electrode placed in the
brain hemisphere contralateral to the stimulated visualifield (table (3.1)). For the N1 component
the attention effect was present in both brain hemispherespiective of the stimulation hemifield al-
though the mean amplitude was higher over the contralabenalisphere (table (3.2)). Figure (3.11)
illustrates the grand averaged scalp topography of bottpooents for all conditions together with the
ERP waveforms at the electrode location where componeasepted the highest amplitude.

Source analysis

Brain areas active during the time window of P1 componenevecalized in striate visual area BA
17, middle occipital gyrus next to BA 18, and middle tempaygfus next to BA 37 irrespective of
the experimental conditions: attended or unattended 8t{frgure (3.12)). Interestingly, the activation
strength was always higher in the attended condition (figBxE2)). Additionally, in the attended con-
dition the right hemifield stimulation evoked bilateral igations while the left hemifield stimulation
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Figure 3.11: Grand averaged scalp topography of P1 and Npaoemts for both conditions and stimu-
lation hemifields. The bottom part of the image shows thedjemeraged waveforms for two electrodes,
PO7 and POS8.

P1 amplitude(1V)
Stimulation hemifield// Mean amplitudet SD Z | p-level
Electrodes location | Attended | Unattended
Left/Right 3.89+1.77 | 287+1.34 | 3.06 | < 0.01
Right/Left 3.024+1.40 | 2.224+1.08 | 2.35 | < 0.01
Left/Left 1.37+1.13 | 0.51 £0.75 | 2.43 ns
Right/Right 1.31 £1.30 | 0.59 +0.86 | 2.35 ns

Table 3.1: Results of the statistical comparisons betwéended and unattended conditions for the P1
components. ERP amplitudes evoked by the attended stirmudugiven electrode location (right or left
hemispheres) were compared to the amplitude evoked by #iteended stimulus in a similar electrode
location (Wilcoxon Matched Pairs tegt,< 0.01, Bonferroni corrected).
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N1 amplitude(uV)
Stimulation hemifield/ Mean amplitudet SD Z | p-level
Electrodes location Attended Unattended
Left/Right -3.09+1.66 | —1.82£1.07 | 3.06 | < 0.01
Right/Left —2834+1.13 | —1.98+1.04 | 3.06 | < 0.01
Left/Left —1.904+1.24 | —0.824£0.87 | 2.90 | < 0.01
Right/Right —255+1.44 | —1.24+0.73 | 2.82 | < 0.01

Table 3.2: Results of the statistical comparisons betw#ended and unattended conditions for the N1
components. ERP amplitudes evoked by the attended stirimudugiven electrode location (right or left
hemispheres) were compared to the amplitude evoked by #ittended stimulus in a similar electrode
location (Wilcoxon Matched Pairs tegi,< 0.01, Bonferroni corrected).

evoked contralateral activations (figure (3.12)). The temated condition always evoked contralateral
activations.

Brain sources found to be active during the time window of Mfinponent were located in the oc-
cipital gyrus next to BA 18 and 19, in the temporal fusiformmgg/BA 37 and in the middle frontal gyrus
next to BA 10 of both hemispheres for both stimulation cdondg. As in the case of P1 component,
attended conditions presented the highest activationgitigfigure (3.13) ).

3.6.3 Discussion

In this section, the swLORETA method was applied to a cla$sipatial attention experiment in order
to test its tomographic properties in a life-like enviromme

It was found that both experimental conditions evoked thivatton of similar areas but their acti-
vation strength differed. This result is in line with the ddéhat spatial attention modulation behaves as
a selective amplification of neuronal activity betwe#hand 200 ms after stimuli onset (Hillyard and
Anllo-Vento, 1998). Active areas were localized in theag&ivisual area BA 17, middle occipital gyrus
next to BA 18, and middle temporal gyrus next to BA 37 betwgerand 120 ms, similar to previous
studies in macaque monkeys and humans (Hillyard and Ardlakd/ 1998; Luck et al., 1997, 1996).

Additionally, the results suggest the existence of attenthodulations in striate visual area, V1.
This outcome has previously been found in fMRI and iEEG ssidiut has been more elusive in scalp
EEG experiments probably because the attentional modulafiVV1 neuronal response is not as strong
as the modulation of extrastriate areas. Indeed, it has beggested that the attentional effect; as
the suppressive interactions among competitive, simedtasly presented stimuli; scales with receptive
field sizes (Kastner et al., 1999; Pessoa et al., 2003). kratbrds, it may take place most effectively
in anterior extrastriate visual areas, which have big rieeefiields, while it may be weak in V1, which
has small receptive fields (Kastner et al., 1999; Pessoa,e2043). In this study, the experimental
design, which minimizes the demands to working memory atethédbn shifting while emphasizes early
visual processing; the quality of the data as well as the gyaphic characteristics of sSwWLORETA
may have helped to isolate the contribution of such a weakcsoto the scalp voltage distribution.
Nonetheless, it should be considered also that swLORETA hdgndency to smooth out the sources as
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Left Hemifield Stimulation

Attended Condition Unattended Condition

Figure 3.12: swLORETA source reconstruction results. Tdmmnstruction was applied on the Grand
Average waveform during the time interval of P1 component.
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Right Hemifield Stimulation
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Left Hemifield Stimulation
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Figure 3.13: swLORETA source reconstruction results. wmnstruction was applied on the Grand
Average waveform during the time interval of N1 component.
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the simulation studies have shown. This fact may have haatiére possibility of resolving the activation
of neighboring areas such as V2 and V3. It has been condistepbrted that the activation of this last
area is enhanced by attention (Martinez et al., 2007, 200%s®et al., 2003). Therefore, we cannot
rule out the possibility that the activation found in thigdt for V1 corresponds to a source in V2 which
has been smoothed out by the inverse reconstruction methplbyed.

Interesting results were also found concerning the difféaéactivation of both brain hemispheres.
Thus, the activation strength of the above mentioned braasareach the imposed cut off threshold
in both brain hemispheres for right hemifield stimulatior @mly in the right hemifield for left hemi-
field stimulation. This observation is in line with previoteports that have demonstrated that severe
contralesional neglect is usually seen after lesions taitfeé hemisphere but not after lesions to the
left hemisphere (Lynch and McLaren, 1989; Watson et al. 4199This may indicate that the right
hemisphere controls the distribution of spatial attentiross the entire visual hemifield and thus can
respond to a stimuli presented either in the right or in thievisual hemifield. In contrast, the left
hemisphere regulates mainly the contralateral hemifietdtans responds to contralateral stimulation
(Gitelman et al., 1999; Spiers et al., 1990; Heilman et &85).

Betweenl140 and 180 ms attentional modulations were localized in the occigtalus (BA 18 and
19), temporal fusiform gyrus (BA 37) and middle frontal gyr(BA 10). Previously, it has been es-
tablished that brain regions continue active after theitigipation in the feedforward sweep (Lamme
and Roelfsema, 2000). This recurrent processing is impbfta incorporating the information coming
from higher areas into their responses through lateral @adlfack connections (Lamme and Roelfsema,
2000). Consequently, it is not surprising that extragridsual areas are found active beyadrid ms.
Additionally, frontal area BA 10 was found active to. Thigarhas been related to executive functions
(Alvarez and Emory, 2006; Jurado and Rosselli, 2007) whiehevindeed emphasized by our experi-
ment. Thus, to achieve a good performance in the appliedpiaglesses such as concentrated attention
on a given visual hemifield, goals maintaining, stimulusgjmént and decision making were required.

Summarizing, the result were in good agreement with previeports that have used a wide variety
of analysis techniques. Consequently, they give suppdtidaonclusion that swLORETA is able to
retrieve correctly brain sources under real life condigion

3.7 Conclusions

The swLORETA method presented in this chapter introducé&vdmlead field weighting to improve the
tomographic performance of widely used distributed ineenethods such as MN and sSLORETA. In this
way, the benefits of the more appropiate lead field weightscoamined with the benefits of SLORETA.
Indeed, the new approach has several advantages, it is tapiog properties are more robust with
respect to the SNR as well as its ability to separate simedtasly active sources, as the single and
two dipoles simulations demonstrated. Especially, swLOREXxhibits the maximal probability index,
which approximates very well the performance of an inverséhad under real experimental conditions.
Only for very deep sources (eccentricities below 50%) swEDRactivity probability index is different
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from 1. Moreover, swLORETA is able to reconstruct accuyatae EEG/MEG generators under real
experimental conditions as demonstrated by analyzing aspétention experiment.



Time Frequency Domain I nverse Solution

Meaning and reality were not hidden
somewhere behind things, they were in them,
in all of them.

Hermann Hesse

4.1 Introduction

For a long time it has been suggested that oscillatory né&gtie activity is one of the candidate
mechanisms used by neurons placed in different and sonsetis&nt regions of the brain to interact
over time and produce a unified cognitive experience (Freei208; Basar et al., 1999; Varela et al.,
2001). Thus, time varying patterns of theta, alpha, betagamima waves have been related to sensory
and cognitive functions such as memory, attention and feabinding (Kahana, 2006; Kelly et al.,
2006; Klimesch, 1999; Luu et al., 2004). Consequently, itmportant to develop analysis methods
able to characterize the dynamics of the brain signals decbon the scalp in the time and frequency
domains, as well as to localize the sources of those timanggpectral components. This combined
time-frequency representation overcomes the inadequtggquency domain analysis to fully capture
the nature of non-stationary signals. Thus, in contraseipuency domain analysis, itis able to describe
how the spectral content of a given signal evolves over tifings characteristic may even become crucial
under some circumstances. Imagine, for example, that twe &fgnals are acquired in response to the
presentation of a top part of a face (condition A) and in respdo a bottom part of a face (condition B).
When applying FFT, it can be obtained that both signals éiximilar spectral peaks ab Hz and3 Hz.
From this analysis one can conclude that both experimeatalitons provoke a similar brain response.
A time-frequency domain analysis, on the other hand, woeNeal that the dynamics response of this
process is actually different. In order words, while coiotitA provokes the3 Hz peak at100 ms and
the 10 Hz peak at170 ms the opposite holds for condition B. In this way, it is possilh disentangle
apparently similar brain patterns.

37
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In this chapter, it will be explained how swLORETA algorithtan be used to find the anatomical
generators of spectral components of the scalp data. SyadlyifswLORETA will be used to compute a
time-resolved spectrum of the “electric neuronal activifyinally, sSwLORETA tomography properties
will be illustrated by means of the spatial attention expent already introduced.

4.2 swLORETA inthe Time Frequency Domain

To estimate a time resolved spectrum of the current souhedgenerate the EEG/MEG a method that
involves three basic steps is proposed. These three s} tme resolved spectro-temporal represen-
tation of the EEG/MEG data, 2) calculation of the spectrofieral representation for the sSwLORETA
estimate and 3) calculation of the swLORETA time-frequepoyver spectrum. Note that to study
evoked oscillations, which bears a constant latency andeptedationship with the eliciting event, all 3
steps are applied on the averaged waveforms. To study idcatwity, which bears a loose relationship
with the stimulus, steps 1 and 2 are repeated for each tpalrately and then, the results are averaged
across trials in step 3.

421 TheHilbert Transform

To decompose a signal in its time-frequency domain a vaoétynethods have been developed, for
example, the short time Fourier transform, the wavelesfiam (Lachaux et al., 2002) and the Complex
demodulation (Papp and Ktonas, 1977). This work will betiédito the use of the analytic signal based
on the Hilbert transform (Gabor, 1946; Bendat and Pier€g®02 but any of the other methods can be
used in a similar fashion. A time resolved spectral analgsasignals(¢) will yield a two dimensional
representation of the signal in time-frequency productspauch spectro-temporal representation is
a complex valued function which consists of amplitude valie, t) and a phase valug¢(w, t), such
that:

2(w, t) = A(w, t) eV 4.2)

In other words, to estimate the amplitude or the phase attiamal frequencyw one first needs to
determine the above complex value. Note that this is alsdett&o estimate more complex measures,
e.g. phase synchronization and coherence, which will bd leger in this thesis. The first step to
compute this spectro-temporal representation is to deosenthe signad(¢) into neighboring frequency
components by applying a band pass filter with bandwidtheceattw given the signak(w, t). After
that, the complex value representation given by equatiah) (#as to be computed for the band-pass
signals(w, t). One standard method to compute such a complex represenisito form the so called
analytic signal. The basic idea is that negative frequenoyponents of the Fourier transform of a real
valued signal are redundant so they can be discarded withsinlg any of the signal’s information.
This characteristic is due to the symmetry of the frequermyain representation around the origin (see
appendix (B) details) that is:
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where S(w) is the Fourier transform of the real value sigrély, t) and 7" denotes the complex
conjugate. Moreover, the analytic signal is written in tbiofving complex form:

z(w,t) = s(w,t) +1i5(w,t) (4.2)

wheres(w, t) is the real valued signak(w, t) is the Hilbert transform andis the imaginary unit.
To arrive to this expression the Fourier transform of thedyitasignal should be defined as:

25(w) forw >0,

Z(w) = ¢8S(w) forw=0,
0 forw <0
= S(w)-2U(w)

whereS (w) is the Fourier transform of the real valued siga@b, t) andU (w) is the Heaviside step
function. This expression only includes the non-negatiegdency components 6f(w). Nonetheless,
this operation is reversible since it is possible to get thigimal spectrum of the signal by taking into
account the Hermitian property 6fw) as:

$Z(w)  forw >0,
S(w) =
S(jw))™ forw < 0.

Finally, taking the inverse Fourier transform B{w) the imaginary part of the analytic signal in
equation (4.2) is given by:

S(w, t) = %P.V. / - Sﬁ’:) dr (4.3)

Equation (4.3) is named the Hilbert transform of the realedl signals(w, t) (for more details
about the derivation of this equation see appendix (B)). mhgnitudes(w, t) ands(w, t) can be used
to compute the instantaneous amplitude and phase of equéatR) as:

=
B
[

[A(w, t)] = /s, (t) + 55,(1)
P(w,t) = arg(s(w,1))

wherearg represents the complex argument function.
Both the geometrical interpretation of the instantaneousliéude A(w,t) and phase)(w,t) are
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A) B)
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Figure 4.1: A) The phase (red curve) is geometrically irmetgr as the angle between a fixed direction
(positive 2 axis) and the current system state (blue curve). B) The kignshown in red and the
magnitude of its analytic signal in blue. Note the envelofbece

represented in figure (4.1) for each time point. Note thainfarow band signals the modulus of the
analytic signal coincide with the envelope of the filter sigg(w,t) (Bendat and Piersol, 2000). In
other words, it corresponds to the amplitude of the osmitaivhich is a measure of the signal spectrum
content. In the next sections, the procedure of computiagttalytic signal will be called the “Hilbert
analysis” and the operation of applying the Hilbert anaiytsi the functionf will be denoted as f.
Also, the linear property of the Hilbert analysis will be ds&his means that given the functigiit) as
f(t) = c1f1(t) + ca f2(t) where the Hilbert transform of thg (¢) and f» exist then:

Hf(t) = H (c1f1(t) + cafolt)) = ct Hf1(t) + coH fo(t) (4.4)

This property will allow developing a computationally eféint algorithm to determine the spectro-
temporal representation of the brain structures that géeethe EEG/MEG signals.

4.2.2 Source Spectro-Temporal Estimation

To determine the spectral evolution of the brain areas ttadyze the recorded EEG/MEG signals it
would be sufficient to apply the algorithm described in sett{4.2.1) to the swLORETA estimates
given by equations (3.20) and (3.24). Unfortunately, tm@pdure is mathematically correct but com-
putationally expensive because it involves the calcutatithe Hilbert transform for each of the usually
thousands of source space points. If unaveraged signabdsthis number multiplies by the amount of
trials. Fortunately, the linear properties of both the HitbTransform and swLORETA can be exploited
to overcome this difficulty. Thus, the spectro-temporarespntation of the swLORETA result for the
ith voxel can be written as:

Q(w,t) = Hjswrorerai(w,t) (4.5)

where(?; is a3-dimensional vector which contains the analytic signatfierrows of the sSwLORETA
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estimatesjs,,.orrT A, IS the 3-dimensional vector corresponding to the SwLORETA resultoxel [
given by equation (3.24) arH is the operator that applies the Hilbert analysis indepetiygleo each row
of the vector placed to its right. Considering that, as dquat(3.20) and (3.24) point out, SWLORETA
can be seen as a linear operator applied to the data v@ctmmprising:

) . B ~1/2
JswroreETA = Wi d with W= {[z),} v { [23] zz} T

W is a3 x ns matrix which represents the sSwLORETA operafdy;), is a3 x 3ng submatrix of%;
corresponding to thih voxel (equation (3.22))[23] ; is a3 x 3 matrix given by thdth diagonal block
of the matrix in equation (3.19]I; is the3 x n, submatrix ofT'(«) associated with voxdl given by
equation (3.15). This, together with the linearity of thdldirt analysis given by equation (4.4), allows
to re-state equation (4.5) as:

Q =W, (H d) (4.6)

As in equation (4.5), this magnitude has to be computed fovcdels [ in the source space. At
first glance, it would appear that this reformulation is finédnt too becauses Hilbert transforms will
have to be computed instead of thélilbert transforms needed in equation (4.5). This is notdase
because terrt d in equation (4.6) have to be computed only one time for all thexel in the source
space (since the data ternis the same for all voxels) and then the result has to be ntietlifpy the
corresponding matri¥Vv, in a loop to get the analytic signal for all voxels in brain gpaConsequently,
only ns (= 300) Hilbert transforms have to be computed. Finally, the tivaeying power spectrum of
the swLORETA estimates for tHevoxel can be obtained from equation (4.6) as:

P (w,t) = diag (Q(w,t) (w,t)") 4.7)

whereT" denotes the transpose complex conjugate ding(M) is the diagonal vector formed by
the diagonal elements of the matiif.

Under the assumption that all the EEG/MEG time series arergagons from stationary stochastic
processes, equation (4.7) provides the time-varying sgembntext of a single realization of that pro-
cess. Unfortunately, is not sufficient to represent thehststic process. Therefore, an ensemblévof
observations must be used to make a statistical estimateeqfdwer spectrum when the unaveraged
EEG/MEG is analyzed. In real EEG/MEG studies this ensendpeesents different task repetitions or
trials so that their time-varying spectrum can be written as

diag ({€(w, t)}; {Q(w, )" }s) (4.8)

||Mz

where{€;(w, )}, is the analytic signal of the swLORETA estimates of tttetrial.
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4.3 Analysisof Experimental Data

In this section, SwLORETA properties in the time frequenoynain will be illustrated using the spatial
attention experiment already introduced in section (3I8).general, the field of source localization
of EEG/MEG spectral components is relatively unexplorecbonggquently, there is some degree of
discrepancies across studies and a working hypothesiddsheuconsidered more cautiously. Thus,
spatial attention has been related with oscillations inttieta 8.5 — 7.5 Hz), alpha {.5 — 12.5Hz),
beta 1 {2.5 — 18.0Hz) beta 2 {8.0 — 30.0Hz) and gamma3(.0 — 70.0 Hz) bands (Bland, 1986;
Eckhorn et al., 1998; Basar et al., 1999; Delorme et al., 2Bai et al., 2007; Deiber et al., 2007, 2008).
The differences between reports may be explained by thefusgatal attentional tasks which mix up
control process and attentional modulation of visual inp&ach of these elementary mental operations
is likely to have different time and frequency relationshipith the incoming stimuli (Deiber et al.,
2007; Fan et al., 2007). In our case, we used an experimesggajrdthat decreases the demands on the
attentional control system, especially working memoryilevemphasizes early attentional modulations
of visual inputs as well as concentrated attention on a giwsnmal hemifield and goals maintaining.
Consequently, we do not expect modulations in the gamma faestiously associated to top-down
processes, working memory and feature binding) (Herrmawhhecklinger, 2000, 2001) but in theta
band. Theta oscillations have been associated to spdgatiah (Deiber et al., 2008, 2007; Missonnier
et al., 2006), and executive attention (Inanaga, 1998; et al., 2007). Although the physiological
basis of theta oscillations are still unclear, previousimeasive EEG/MEG studies have suggested that
the brain areas involved in the generation and maintenahtieeta oscillations are the hippocampus,
occipital cortex, anterior cingulate cortex, mesial fadrortex and/or dorsolateral frontal cortex.

Procedure

The characteristics of the subjects who participated irsgatial attention study as well as the method-
ology employed to pre-process the signal have been alrezgbyrided in section (3.6).

Time frequency analysis of evoked and induced scalp EEG activity

To perform this analysis a group of 12 posterior electrodessn each hemisphere (Cpl-Cp2, Cp3-
Cp4, Cp5-Cp6, Tp7-Tp8, P1-P2, P3-P4, P5-P6, P7-P8, PO3-POB-PO6, PO7-PO8, 0O1-02) was
selected because they exhibited the highest ERP resp@esegstion (3.6.1)). The time-varying power
spectrum, given the analytic signal, was computed for ebattiredes (see section (4.2.1)). Afterwards,
the electrode that presented the highest power in eachedneguband (theta3.5 — 7.5 Hz, alpha:
7.5 — 12.5Hz; beta 1:12.5 — 18.0 Hz, beta 2:18 — 30 Hz; gamma30 — 70 Hz) was identified and the
mean power over two time intervalg(— 120 ms and130 — 180, ms) was extracted for each subject,
condition and band. These time intervals were chosen becassexplained in section (3.6), there
is overwhelming evidence suggesting that the attentioaceffakes place during that time. Finally,
statistical analysis was applied to determine for whiclydiency band there were significant differences
across conditions.
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Figure 4.2: The power spectrum of the grand average of tweseptative electrodes (PO7 and PO8)
obtained after applying the Hilbert transform.

Time-frequency source analysis

Once the frequency range of the oscillations modulated teyptbdn was known, their brain generators
were determined using equations (4.6), (4.7) and (4.8)allirto determine which brain regions ex-
hibited significant differences in the power estimates s&tone and conditions statistical analysis was
applied.

Thus, evoked and induced scalp oscillations were analyzied) trriedman ANOVA testi( < 0.05)
and, if the test results were significant, planned compasisgere made using the Wilcoxon Matched
Pairs Test)f < 0.05; Bonferroni corrected for multiple comparisons). In theeaf the source analysis
the False Discovery Rate Test (FDR) (Benjamin and Yeku26i01) method was used.

4.3.1 Results
Scalp time frequency analysis

Friedman ANOVA analysis revealed that there were signifiahifierences only in the theta power
evoked by each condition betwe&A and 120ms (Chi®> = 26.06; df = 7, p < 0.0001) and be-
tween140 and180ms (Chi? = 22.86; df = 7; p < 0.001) (figure (4.2)) . Wilcoxon Matched Pairs
Test showed that betwe&0 and 120 ms those differences were present only for the electrodsddc
in the hemisphere contralateral to the stimulation (tafl&)j. Betweeri40 and180 ms the differences
appeared for the contralateral electrode in the case didefiifield stimulation and in both the ipsilateral
and the contralateral electrode in the case of right hemi§iginulation (table (4.2)).

Induced oscillations, on the other hand, did not presetisstally significant differences between
conditions (figure (4.3)). Nevertheless, as induced @gmls in some frequency range could have
been associated to cognitive processes required by botliticmis, the power values across bands for
both conditions and brain hemispheres were compared gejyarét was found that betwees$0 and
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Evoke theta powef:V?/Hz) betweer80 and120 ms
Stimulation hemifield/ Mean amplitudet SD Z | p-level
Electrodes location Attended Unattended
Left/Right 0.0444 £ 0.0345 | 0.0257 & 0.0208 | 2.75 | < 0.01
Right/Left 0.0284 £ 0.0346 | 0.0122 + 0.0076 | 2.82 | < 0.01
Left/Left 0.0223 + 0.0337 | 0.0099 £ 0.0073 | 0.94 ns
Right/Right 0.0289 + 0.0341 | 0.0131 £0.0112 | 2.35 ns

Table 4.1: Results of the statistical comparisons betwt#ended and unattended conditions for the theta
power evoked fron80 to 120 ms. Power values evoked by the attended stimulus in a giverretse
location (right or left hemisphere) were compared to thegrowlues evoked by the unattended stimulus
in a similar electrode location. (Wilcoxon Matched Pairstte < 0.01 Bonferroni corrected).

Evoke theta powefu V2 /Hz) betweenl40 and 180 ms
Stimulation hemifield/ Mean amplitudet SD Z | p-level
Electrodes location Attended Unattended
Left/Right 0.0490 +0.0399 | 0.0291 +£0.0268 | 2.59 | < 0.01
Right/Left 0.0338 +0.0454 | 0.0132 +0.0864 | 2.75 | < 0.01
Left/Left 0.0283 +£0.0473 | 0.0114 + 0.0863 | 1.26 ns
Right/Right 0.0362 + 0.0444 | 0.0152 +0.0142 | 2.59 | < 0.01

Table 4.2: Results of the statistical comparisons betwt#ended and unattended conditions for the theta
power evoked fromi40 to 180 ms. Power values evoked by the attended stimulus in a givertretie
location (right or left hemisphere) were compared to thegrowalues evoked by the unattended stimulus
in a similar electrode location. (Wilcoxon Matched Pairstte < 0.01 Bonferroni corrected).
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Figure 4.3: Induced power spectrum of a single subject forrepresentative electrodes (PO7 and PO8)
obtained after applying the Hilbert transform.

120 ms there were differences in power across bands for bothttiveded C'hi> = 166.15; df = 19;

p < .00000) and the unattended(1i? = 94.65; df = 19; p < .00000) conditions. Similar result was
found from 140 to 180 ms for the attended{hi®> = 92.95; df = 19; p < .00000) and the unattended
conditions Chi® = 100.31; df = 19; p < .00000). The highest mean was consistently found in
the theta range (figure (4.4)) but Wilcoxon Matched Pairg @iemonstrated that the differences were
significant only for uncorrected data. Similar results wads® found for the unattended condition. Due
to this finding, source analysis was also applied on indulcethtoscillations.

Source Analysis

As it was done for the time domain analysis (see section )3te¢ source localization method was
applied on both the grand averaged waveform and individatd €r each condition, separately. For
the evoked theta oscillations it was obtained that f&thto 120 ms there were significant differences in
the activation strength of occipital (BA 17, BA 19) and mieldiccipital areas (BA 18) as well as in the
middle temporal region (BA 37) in the hemisphere contratdt® the stimulation (figure (4.5)). From
140 to 180 ms the differences appeared not only in these areas butratbe isuperior temporal gyrus
and in the middle temporal gyrus (figure (4.5)). Sources efitiduced oscillations were placed in the
bilateral middle frontal gyrus, including BA 10 and 46, ahe tbilateral inferior frontal gyrus. Figure
(4.6) shows the resulting functional probabilistic mapsI&P).
These maps were builded from the individual time-varying @RETA power spectrum:

N .
1 1 if |Pi(z,yz)|| > 0.5 - ||P;(max)]|
pmap(wvyvz) = X7 Zpi(wvyvz) where pz(x7y7z) = ‘ ’
N < 0 otherwise
=1
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Figure 4.4: Mean and standard deviation of induced powertgpa values for the attended condition.
For each value its frequency range, stimulation hemifield electrode location are indicated. For
example, “theta L / L stands for frequency theta, Left stiation hemifield / Left electrode hemisphere.
Note how the theta mean is the highest across all stimulagamfields. The differences were significant
only for uncorrected data.

wherep,,q,(, y, 2) is the value of the PMAP at a given voxel with coordinatesy, z) andP; (x, y, z)
is the time-varying swLORETA power spectrum for the-subject at the same voxdP;(max) is the
absolute maximum value @&; for the ith-subject angd; (x, y, z) represents the probability that the voxel
is active with the value above tt% of maxima.

4.3.2 Discussion

The results obtained on the scalp are in agreement with tirerdustate of the knowledge in the field
and so they validate the efficacy of swLORETA. Thus, it wasamlgtd that evoked and induced theta
oscillations are involved in spatial selective attentidmich is not surprising since previous studies have
demonstrated that theta is involved in several tasks thpbs®s important demands to the attentional
system. For example, in rodents theta oscillations inergdgen the animals are exploring the environ-
ment (moving around, sniffing and orienting) (Bland, 198&hkna et al., 2001) and performing spatial
as well as non-spatial memory tasks (Givens, 1996; Jensgriiaman, 2000; O’'Keefe and Recce,
1993; Skaggs et al., 1996). Furthermore, it has been shatihoiig term potentiation is favored at the
peak of the theta cycle while depotentiation is favoredsatritugh (Holscher et al., 1997; Huerta and
Lisman, 1993). In humans, comparable results have beemteepdScalp and intracranial EEG/MEG
recordings have demonstrated that theta activity raisesgluerbal working memory (Klimesch, 1999;
Raghavachari et al., 2001), episodic memory (Klimesch,9},99patial n-back (Gevins et al., 1997;
Krause et al., 2000), maze learning (Caplan et al., 2001aKalet al., 1999) and attention tasks (Deiber
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Figure 4.5: Source analysis of evoked theta oscillatiortse ihage shows the statistical map of brain
theta power values evoked by the attended condition vehgusrtattended condition. Only voxels that
exhibit significant differences in their power spectrumues are shown. Activations are thresholded at

p < 0.05, FDR corrected.
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Figure 4.6: Source analysis of induced theta oscillatidie image shows the brain areas that exhibited
more than 70% of the individual highest power value at eank foint, during more thatd ms and in

more than 70% of subjects.
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et al., 2008, 2007; Missonnier et al., 2006).

The varied cognitive content of the experiments for whidtdthas been found to be relevant allows
thinking that this rhythm may have not a single functionderim cognition and/or that it is related
to more general processes such as attention or cognitivieot@gahana et al., 2001). In line with
this idea, the current results showed that theta has a oidlfiivolvement in spatial selective attention
depending on its temporal relationship with the elicitirigmsili and the functional specialization of
the generating neuronal networks. This idea will be furtiscussed in the next two subsections. In
contrast to previous reports, we found attentional modriatneither in the gamma nor in the alpha
bands. Several reasons may explain this discrepancy., Eastrasting studies have suggested that
gamma band may be related either to the selection and idatitfh of relevant information (Herrmann
and Mecklinger, 2000, 2001), e.g. targets, or to the mintasaccades associated to target presentation
(Yuval-Greenberg et al., 2008). In either case, gamma natidals may not be evident in response to
standard stimuli, which were analyzed in this study. Secgathma oscillations may also be related
to the orienting or executive components of the attentioeaivork, as suggested previously (Fan et al.,
2007). Any of these components were emphasized by our tasit.but not least, it should be mentioned
that some studies have failed to find gamma synchronizatiggamma oscillations at all in monkeys
(Lamme and Spekreijse, 1998; Tovee and Rolls, 1992; Youaf},et992) and humans (Juergens et al.,
1999). The absence of differences in the alpha band may réfledact that the presentation of the
standard stimuli did not modulate significantly subjeces/dl of arousal because they were irrelevant
for a proper task performance. Future studies that inclxger@mental conditions able to control this
effect are needed to further clarify this issue.

The evoked theta oscillations were found to rise within timgetranges of the attended conditions:
80 — 120 ms and140 — 180 ms. This result agrees with our own and previous studieshidnag shown
that ERPs modulations occurs within these two intervalgatial attention experiments (Russo et al.,
2003, 2002; Hillyard and Anllo-Vento, 1998; Hopfinger et 2004; Martinez et al., 2007). Within both
time periods evoked theta oscillations were localized wisttructures of the visual pathway responsible
for early extraction of visual basic information and objantlysis. Comparable sources were found in
this and previous studies in the time domain within similaret intervals. This result provides further
support for the idea that theta oscillations are involvedigual processing. They also suggests that
those oscillations may be closely related to the spatiahtitin effect observed on the wideband P1 and
N1 components (Martinez et al., 2007; Luck et al., 1996;ydiitl and Anllo-Vento, 1998).

Additional sources of theta evoked activity were found msliperior temporal gyrus and the middle
temporal gyrus betweet0 and180ms. From the physiological point of view, the temporal segrc
were indeed expected because previous neuroimaging stadiemans have reported increased activity
in temporal regions during visual spatial attention tagkerbetta et al., 1998; Gitelman et al., 1999;
Nobre et al., 1997). Furthermore, it has been shown thatriedio superior temporal gyrus provoke
neglect in monkeys even for stimuli presented unilater@liygnch and McLaren, 1989; Watson et al.,
1994). In humans, lesions to the middle temporal gyrus @bbextending into the temporo-occipital
region) has also been linked to extinction and other commisraf contralesional neglect (Bisiach et al.,
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1981; Friedrich et al., 1998). Unfortunately, it is stilltradear whether these temporal regions are linked
to attention-related visual processing of the stimuli @ ¢he. It has been previously reported that only
the attention-directing cues are able to modulate theigctivthe superior temporal sulcus, anterior to
the temporal-parietal junction (Hopfinger et al., 2000)efgiore, it has been suggested that this region
is involved in attentional control circuitry but not in attéon-related processing of relevant target stimuli
(Hopfinger et al., 2000). In the paradigm used here the retexze remained on the screen during the
presentation of the stimuli and, thus, it cannot be difféated between cue and stimuli processing.
Further research is needed to give a more precise answas ieghe.

The analysis of induced activity presented a differentgoatof results. They were not modulated by
attention but were present in both experimental conditaorbswere not associated to the activation of vi-
sual occipital and temporal areas but frontal regions. dhisome may suggest that they are associated
to general processes required for a good performance irakptiention paradigms. Considering that
the current experimental design emphasized concentrétieatian on a given visual hemifield, goals
maintaining, stimulus judgment and decision making it isgdole to think that these were the functions
supported by the induced oscillations. The brain areasfoaibe the sources of these induced theta os-
cillations (bilateral middle frontal gyrus, including BAXnd 46, and the bilateral inferior frontal gyrus)
bring further support for this idea. These regions havellyshaen related to executive control (Alvarez
and Emory, 2006; Jurado and Rosselli, 2007). FurthermiBieGistudies in humans and monkeys have
reported the existence of similar frontal theta activationng problem solving (Inanaga, 1998), contin-
uous mental activity and preparation for rapid motor respsr(Delorme et al., 2007). Thus, it has been
related to concentrated performance of mental tasks andidwp processes.

4.4 Conclusions

In this chapter, swLORETA was extended to the time-frequatamain by applying the Hilbert trans-
form to the time series obtained with the swLORETA inverdetimn method. The resulting algorithm
is not only efficient but also accurate as demonstrated bgiladysis of a spatial attention experiment.
In line with previous studies, the obtained results sugtiegtallocating attention to a specific location
in the visual field enhances both evoked and induced thetatactWhile visual analysis of the stimuli

is associated to evoke oscillations in striate, extrast@and temporal regions; executive functions are
linked to induced theta oscillations generated in frontaka. It is worth mentioning that our exten-
sion, as can be seem from the results section, can be applied analysis of both evoked and induced
EEG/MEG activity.






Functional Connectivity

All great progress takes place when two
sciences come together, and when their
resemblance proclaims itself, despite the
apparent disparity of their substance.

Henri Poincare

5.1 Introduction

Coherent cognitive life strongly depends on the connestioetween different and sometimes distant
brain regions (Varela et al., 2001; David O., 2002; Weiss Muoeller, 2003). For example, visual pro-
cessing in primates is characterized by two major functiprsegregated and hierarchically organized
pathways: a ventral stream, which includes areas V1, V2,agdwell as further stations in inferior
temporal cortex; and a dorsal stream, which includes ardas/¥, V3, MT/V5, and further stations
in posterior parietal areas (Zeki, 1978; Ungerleider andibene, 1986; Young, 1992). Although their
functional segregation is not strict, lesion studies in kays and humans have shown that the dorsal
stream favors the analysis of information concerned wittionglow visual contrast, and lower spatial
frequency while the ventral stream favors the analysis fofrimation concerned with color and shape
(Ungerleider and Desimone, 1986; Young, 1992). Howeveundaily vision, objects need to be
processed based on, for example, motion and shape cues. ftdawese different attributes, which
are analyzed by each stream; integrated into a unified, enhperception? During the last years, the
problem of information binding or integration has receiwsine attention as it poses one of the most
fascinating and fundamental problems in Neuroscience.adtlieen proposed that the relatedness of
neurons that code different features is supported by thedtion of transient oscillatory assemblies or
functional systems (Singer, 1989; Varela et al., 2001).

Two main methods have been developed to determine thisidmattrelatedness between brain
areas: coherence and phase synchronization. Usuallye theshods are applied on the scalp level

51



52 Chapter 5. Functional Connectivity

which can introduce serious pitfalls. This is due to the theit, as explained in previous sections,
at the scalp level the signal registered by each detectomixiare of the activity produced by several
areas. As the inverse methods try to resolve this mixtur®pamg coherence or phase synchronization
analysis at the level of the sources should yield to morerately results and even more important for
the inverse methodology, to a better estimation of actieasrFor all these reasons, the present chapter
will illustrate how to combine the swLORETA algorithm ancktHilbert transform described in chapters
(3) and (4) with the phase synchronization (Tass, 1995, 12004) and coherence index to measure,
non-invasively the amount of functional connectivity.

This chapter introduces the coherence (5.2.1) and phasbrsyrization measures (section (5.2.2))
for the bivariate case. In sections (5.2.3) and (5.2.4) tierence and phase synchronization imaging
methods will be introduced. Finally, sections (5.3.2) ahd) will be devoted to assess the accuracy of
the proposed method with simulated and real data.

5.2 Functional Connectivity Image Based on swL ORETA

5.2.1 Coherence

In neuroscience research, the coherence between two tifae &t correspond to two different spatial
sensors locations is interpreted as a measure of the faattonnectivity between these two locations
(Singer, 1989; Eckhorn et al., 1998; Gross et al., 2001; &ehjal., 2005). The coherence function
between the pair of signai(¢) andy(t) as a function of frequency is defined as:

[Firy (w)]

C(w) =
() Frp(w) Fyy (w)

(5.1)

whereF,,(w), F,, (w) andF,, (w) are the power spectra and the cross spectrum{igfandy(t) given
by:

where X (w), Y (w) are the Fourier transforms of the two signalg), y(¢) and X indicates the
complex conjugate ofX. In this way, it is obtained a frequency function that canyailke values
betweerD and1, where0 indicates no linear correlation between the signalslaindicates that the two
signals are completely correlated.

When narrow-band signals are analyzed, the coherencedaristonly meaningful in the narrow
range where there is significant power. Outside this regiohas no sense to talk about the signals
being correlated (since there is essentially no signak)hend numerically, the estimation of the co-
herence function ends up being the ratio of two very small lmensy which typically ends up giving
non-meaningful values from the entire ran@é 1. As a result, the coherence at the peak frequency
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(Eckhorn et al., 1998; Gross et al., 2001)is usually taken.

Here, a slightly more robust approach is proposed. It isbasehe creation of a weighted average
of the coherence function over the entire frequency rangeistweighted by the amount of power in the
signals at each frequency. In effect, the coherence fum@ifust a normalization of the cross-spectrum,
so this new approach can be thought of as an alternative fligati@n that reduces the measure to a
single coherence index, defined as:

C'(z(t),y(t) =T C(w)y/ Fra(w) Fyy(w) (5.2)

whereC'(w) is the standard coherence function, ahet 1/ (3", v/Fra(w)Fyy (w)) is the normal-
ization factor, which is equal to the value that the weiglsieoh above would obtain for 100% coherence.
This is equivalent to

_ 2w [Py (0)]

> V Fra (W) Fyy (w)

This average provides a single positive value in the rangedsn0 and 1, which represents the
weighted average of the cross spectrum over all frequentighis way,C’(z(t), y(t)) = 1 represents
a perfect linear relation between signalg) andy(t). On the contraryC’(z(t), z(t)) = 0 means no
linear relation between the two given signals. The advantdghis measure over the standard procedure
of choosing the value of the coherence function at the peakadold. First, it eliminates the need to
statistically identify exactly where the peak is and se¢dhd value obtained will be less sensitive to
statistical analysis because it is an average over manydray bins. From this point forward the * will
be omitted and instead will be usédx, y) to denote the coherence index betwaeandy given by

C'(2(t),y(t))

equation (5.2).

5.2.2 Phase Synchronization

The notion of synchronization was introduced by the Dutderdst Christiaan Huygens back in the
17th century. In its classical form, phase synchronizaisamsually defined as a locking of the phase of
the two oscillatorse(t) andy(t):

Py (1) = m(t) —niy(t) = x (5.3)

where,(t), 1, (t) is the instantaneous phases time, x is a constant, and, m are integers that
indicate the ratios of possible frequency locking. Thisadify can be disturbed by dynamical noise or
by chaos, both can be conceptually considered in the framkegistochastic dynamics. In the case of
small and bounded noise the stable phase dynamics is oghtlglperturbed. Thus, the relative phase
vy (t) mainly fluctuates around some constant level and consdgutivet phase locking condition can
be rewritten as:

|@hy ()] = [mabe(t) = npy, (1] < x (5.4)
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In the case of unbounded noise, i.e data acquisition nofsrémt to the EEG/MEG signals, these
nearly stationary fluctuations may be interrupted by phdips,swhere the relative phase;’,’ (t)
changes relatively rapidly (by-27). Thus, strictly speaking, the phase difference is unbedrahd
condition (5.4) is not valid anymore. Nevertheless, it hasrbdemonstrated that the distribution of the
normalized cycliow : m phase difference

_ mz(t) — ny(t)
2

has one or more dominating peaks (Rosenblum and Pikovskyg)20 he presence of these peaks
can be understood as the phase locking in a statistical .skntbés context, theormalized cyclio: : m
phase difference&an be considered as a random variable characterized bybakplity distribution.
Here, this probability distribution is empirically accéss in the form of a number of realizations of
;' (t) in the time intervak € [t,,t,]. There, in order to characterize the deviation of tibemalized
cyclic n : m phase differencérom the uniform distribution a synchronization index bdiem Shannon
entropywill be used(Tass, 1999). This index is defined as:

Wy (1) mod 1

P (), Y(t)) = [Smax — S(t)] /Smax (5.5)

whereS(t) = — S0, pi Inpy, is the entropy of the actual distribution &fy’; (),

N = exp(0.626 + 0.411log(M — 1))

is the optimal number of bins for a distribution f points (Otnes and Enochson, 1972; Tass, 1999),
pr is the frequency of finding’;," (¢) in the kth bin, andS,.x is the entropy of the uniform distribu-
tion given by Smax = In N. p,, , = 1 represents a perfect phase synchronization (Dirac diititn)
andp,, , = 0 represents a uniform distribution of tm@rmalized cyclic: : m phase differenceAl-
ternatively, instead of the Shannon-entropy-based indes,can also use the Kuiper test. This tests is
a modified version of the Kolmogorov-Smirnov test, whichrigariant under changes to the arbitrary
choice of zero phase. This provides the probability withaliha given distribution can be considered to
be uniform (Tass, 2004). The advantages of the entropy irgdsat, in contrast to other kind of phase
synchronization measures like phase coherence (Lachalx £999; Hurtado et al., 2004), it does not
assume an unimodal distribution for thermalized cyclia: : m phase difference.

5.2.3 Principle of Coherence Imaging

In section (5.2.1) the concept of coherence as a measureaidoal coupling was reviewed. Several
studies have used the coherence index between sensortngadiffierent scalp areas as a correlate of
oscillatory coupling between brain regions. However, agas shown in chapter (2), this approach is
limited because of the complex relation between the PCD lamdEEG/MEG signal recorded over the
scalp. In this section, a method to estimate coherence batdifferent brain areas and between a brain
and an external signal will be introduced. This last cas¢ vélconsidered because it is relevant for



5.2. Functional Connectivity Image Based on swWLORETA 55

research in the field of, for example, Parkinson patient®g&et al., 2001). In these type of studies,
the tremor generation is studied by determining the cogpdetween the electromiogram (EMG) and a
brain region. When the EMG-to-brain case is consideredfatighat the estimated signal at each brain
location is a vector with three components has to be solvedhi$ end, an extension of the weighted
coherence function (equation (5.2) ) that produces a singkex for all three components will be used.
This weighted coherence function between a scalar signabnd a three dimensional vectjgr, ¢) is
defined as follows:

O(s(t),3(r,1)) = max {C (s(t).Ji (x, 1)} (5.6)

wheres(t) is the reference signaj(r, t) is the PCD at locatiom, andj;(r,t) is theith component of
j(r,t).

When the brain-to-brain case is considered, a similar probthas to be solved but in contrast to
equation (5.6) here both signals are vectors and, thus,tangan to equation (5.6) has to be made as
follows:

C(s(t',),5(r,1) = max {C (si(x',1),j(x. 1)) } (5.7)

wheres(r’, t) andj(r,¢) are the PCD at voxal’ andr respectively,s;(r’,¢) is the component of
s(r’,t) and C (s;(r', ), j(r,t)) is the coherence between a scalar and 3-dimensional veutar by
equation (5.6). In principle, with equation (5.7) it is piis to compute the coherence between all
possible voxel combinations in brain space but it will be patational expensive. It is more efficient to
identify first one brain region involved in the response a@&iast. This can be achieved for example by
selecting the voxel which shows the maximum power spectrurimg the time and frequency of interest
(see section (4.2.2) for more details) and use it as theardersignas(r’, ¢) for the computation of the
coherence index with all other voxels in the source spacettan criteria can be to use prior information
given by fMRI or PET. In this case the voxel with the highesp@nse can be selected and used as the
reference signal(r’, t).

The maximum value over the three components in equatiof¥ #8d (5.7) was chosen instead of
an average or modulus of the three components because theumaxs more robust with respect to
rotations of the coordinate system. For example, considehtghly coherent signalsS1, which is the
external one and2, which is placed along the axis. Then, add a small amount of noise to all three
axes, so that the axis, primarily the signab2, is stronger than thg or z components. Additionally,
place the same sign&2 halfway between the: and y axis. In this second case, bothandy are
primarily the signalS2. In these two cases, the mean coherence over all three akbe wery different
and it will be much higher for the second case. The maximune@ite over all three axes, however,
will be much more stable under such rotations because thgawntabove mentioned will only slightly
reduce the coherence betweeand:.

To avoid spurious detection of coherence, surrogates @aped by replacing(t) and ji(r,t)
with surrogate signals(t) and j,.(r,t). The surrogate signals are generated using the DFS (Dygital
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Filtered Surrogate) method (Dolan and Spano, 2001). Thdymres surrogate data which have the same
power spectra as the original signals and are, in all resploear stochastic processes. This means that
any and all correlations betweeiit) and ji(r,¢) are eliminated from the surrogate data. Any degree
of coherence between the surrogate signals is thereforemyedo statistical fluctuations. Of course,
the range of values that the coherence index will take foh suwcorrelated signals will depend on
factors such as the power spectra of the signals and thenlenghe data sets. These surrogates, thus,
allow setting up a confidence level for what constitutes aevalf C' statistically different from zero. A
population of300 surrogate data sets were generated, and the coherencenadealculated for each
set. The99th percentile of the distribution of surrogate coherenckexes then serves as a baseline for
the coherence analysis, and is subtracted from equatiéj (5.

C(s(t),j(r,t)) = mjéx{max{c (s(t),Ji(r, 1)) — C% 0}} (5.8)

whereC® is the above mentionebth percentile of the coherence index distribution for thecgate
signalss(t) andj(r,t). In a similar way, it is defined the 99th percentile for the @mce function
presented in equation (5.7).

5.2.4 Principle of Phase Synchronization Imaging

As in section (5.2.3), a generalization of the synchroioreindex (Tass et al., 2003) is used to take into
account the synchronization between a scalar sigital, and a three dimensional vecfgr, ¢):

pina(5(0):3(5,) = max{ i (5(8), i, )} (5.9

wherej; is theith component of. The signals(¢) represents an external signal such as an EMG
measurement or sensory stimulus. The synchronizationdeetwwo three dimensional vectsfr’, t)
andj(r,t), is defined as:

pm,n(s(r,> t)>j(r> t)) = I?:?élx {pm,n (Si(r,> t)>j(r> t)) }

To avoid a spurious detection of synchronization, a bas@arrection is again introduced by means
of surrogate analysis. As mentioned above, the null-hygsishis no longer that there is no correlation
between the signals at all (that issue has already beerveelsosing the coherence tomography anal-
ysis) but that the signals can be modelled as interactirgatistochastic processes. This indeed, is a
more specific null-hypothesis. For this purpose, surragttat preserve both the power-spectra of the
original signals, as well as any linear correlations betwiem are needed. This is accomplished us-
ing the CDFS (Coherent Digitally Filtered Surrogate) meitfidolan and Neiman, 2002; Dolan, 2004).
This method generates pairs of surrogate signals for whielpower spectra of the original signals are
preserved and the coherence function of each pair is the aarfo the original signals. Because it is
desirable to test against the null-hypothesis of any sdiheér correlations, the version of this method
described in (Dolan, 2004), which preserves not only theepatice function but also the phases of the
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cross-spectrum, is used here. Again, 300 surrogate rgafizaare used. The synchronization index
is calculated in each case, and the 99th percentile of thdtires distribution of values is used as a
baseline.

prman((2),3(x,1)) = max{max{ . (5(8).Ji (,)) = piy s O} (5.10)

5.3 Analysisof Smulated Data

5.3.1 Description of the Simulations

In this section the results of a study carried out to test timographic properties of the phase syn-
chronization and coherence image will be presented. Thidyswvas performed using simulated data.
Although the phase synchronization image was formulatethiogenerah : m case, for these simula-
tions it was limited to thes = m = 1 case. The ongoing cerebral activity was simulated by usiegod
the two coupled phase oscillators as the time course of amdipole at locatiomg. A phase oscillator

is an oscillator with constant amplitude and it serves aswege model that approximates various types
of oscillators in physics and biology (Kuramoto, 1984; Ws, 2001; Tass, 1999). The oscillators were
simulated using the Kuramoto model (Kuramoto, 1984):

i=wit gl ) i=12 i (5.11)

wheret; are phase variablesy; are the natural frequencies of the oscillators, &nid the cou-
pling strength. This model represents the phase dynamies afscillator with time course;(t) =
A, cos(;(t)), where A; represents the amplitude of the oscillator. The time coofseur simulated
dipole isz;(t) = cos(1;(t)) with constant amplitudel; = 1. Additionally, w; = 1.0, we = 1.0, and
I' =3.0.

The magnetic flux for each time was computed and Gaussiar whise was added to the signals
after the forward solution. In this case, statisticallygpdndent white noise signals was added to each
detector. Each of these noise signals is mean zero, witbatdwleviation given by the desired signal-to-
noise-ratio. To deal effectively with time-varying dipsléhe SNR definition was re-defined as follows.
First, the detector with the maximal signal strength owaetivas selected. That means that it was the
detector for which the standard deviation of the magnetic diver time was maximal. The standard
deviation of this signal was then divided by the standardali®n of the noise to get the SNR. Note
that the noise strength was the same for all detectors, se ttetectors which, in the absence of noise,
measured very weak magnetic fluxes consisted primarily @fendrlhis random noise was intended to
represent the measurement noise of the detectors. Othamtiabtsources of noise, which had to be
modelled as signals that could be correlated between desewtere not considered. Figure (5.1) shows
the signals for each MEG detector with a SNR = 6 for the mosedigial dipole.

Afterwards, the swLORETA method was used to compute the Pi®B.coherence and synchro-
nization indexes between the original phase oscillatorthe@stimated PCD for all voxels in the source



58 Chapter 5. Functional Connectivity

Figure 5.1: Time courses of the simulated MEG signal. Eactangle corresponds to an MEG sensor.
In this case, a white noise with a SNR = 6 was added to the afigignals. Channel 120 represents the
detector with the maximum signal strength over time.

space were obtained by means of equations (5.8) and (5eEpgctively. In these simulations, the posi-
tions of the simulated dipoles were the same as those of flededi described in subsection (3.5.3). For
each dipole position, thg and z orientations were considered and the results for both tatiems were
averaged. In order to estimate the mean and the standard3®&moise realizations were used for each
dipole position and direction.

5.3.2 Results

Results are presented in figures (5.2) and (5.3). These $ignoiat out the dependency of the local-
ization error and activity volume on the eccentricity forthbanethods. swLORETA synchronization

tomography showed a very small localization error for alesttricity values. In contrast, although the
localization error of sSwWLORETA coherence tomography daseel while the eccentricity increased, it is
only comparable with the swLORETA synchronization tom@dmafor eccentricity values higher than

90%. Additionally, both the localization error and the gation volume of sSwLORETA synchronization

tomography were smaller than the localization error andattiation volume of sSwLORETA (data not

shown here).
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Figure 5.2: Localization error of swLORETA synchronizatiand swLORETA coherence tomography.
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Figure 5.3: Activation volume of sSwWLORETA synchronizatiand swLORETA coherence tomography.
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5.4 Phantom Experiment

5.4.1 Description of the Experiment

This section focuses on a second study performed to testeki@psly presented algorithms. This time,
the data was generated using a phantom, a composite fibergghere o8 cim diameter figure (5.4)
and recorded by means ®80 magnetometers of the 4D Neuroimaging MAGNE®)0 WH system
(see section (3.5.1) for details). The advantage of thie tyfpstudies is that the dipoles placed inside
the phantom are well characterized in term of their posiéind strength. Consequently, the localization
error of a given inverse method can be objectively teste@ pifantom was fitted to the helmet portion
of the sensors array and contairiedipoles withs known fixed positions and tangential oriéatet. The
distance between adjacent dipoles Wasi1. The phantom was also filled with saline solution to allow
the current to flow when energizing a dipole and produce agihgmmagnetic field. Each dipole was
constructed by a twisted pair of fine wires running along tisde of the fibreglass rod at the outside
of the sphere with opposite ends separatedBym. These wires were connected to a switch box
and a function generator outside the MEG shielded room. Thetibn generator provided a variety
of waveforms, including sine-waves, square-waves and ctla@dard waveforms. The amplitude and
frequency of this waveforms was adjusted manually.

Each dipole was energized independently wittd &z sinusoidal waveform during0 s at a sample
rate of1000 Hz. In this way,5 different MEG data sets were generated. Afterwards, thew Wwand pass
filtered betweeri).1 Hz and20 Hz. Data previously collected in the same system from angd$tuman
subject, was also added to achieve a typical SNR. Finallyptiginal 10 Hz sinusoidal waveform was
used as the external signal in equations (5.10) and (5.8% PI®D was obtained by using a 3D grid
fitted to the top semi-sphere of the phantom. A totaldfx 17 x 9 = 2601 points were used with a
minimum distance o8.7 mm in thez-axis andy-axis and7.8 mm in z axis. The coordinate system used
was already explained in section (3.5.1). Only 1ié&6 voxels lying inside the phantom were finally
used as source space. During the simulation, the phantépoted pointed to the surface of the skull in
the z-axis.

Because the position of the current dipoles inside the jpimantere known they were used to esti-
mate the localization error of the inverse methods consilléere. The localization error was defined
as the Euclidean distance between the maximum of the symightmn index (or coherence index)
distribution and the real position of the current dipolédesthe phantom and is shown in figure (5.5).

5.4.2 Results

The localization error is shown in figure (5.5). As in pre\sasimulations, the localization error ex-
hibited a general decrease while the eccentricity exhdlateincrease for both the synchronization and
coherence tomographies. This was true despite the facthtbdteal” MEG signal was embedded in
a more “realistic” noise environment (e.g. the typical lgckind noise present in the MEG shielded
room, subject’'s heart beat and respiration). This noisehaae@ a much more complicated structure
than the Gaussian white noise used in all previous simuigaténd so it is closer to real experimental
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Figure 5.4: The phantom before the measurement in the ME@my<Reference coils are fixed to the
headof the phantom in order to measure the positions of the MEGasITelative to the head.

conditions.

Figure (5.5) also shows the localization error for the swlEJR. In this case since there wetés
of data30000 possible reconstructed images (one for each time sampdx Consequently, in order
to compare the performance of the swLORETA with the syndiadion and coherence tomography,
its localization error was defined as the minimum error okerget of30000 possible realizations. The
localization error for a given realization was taken agaitha Euclidean distance between the maximum
of the PCD and the position of the current dipole inside thenpbm for the realization under analysis.
As in previous analysis, the swLORETA localization erroc@&sed with the increase of the eccentricity
and had a maximum &f0 mm for the deepest dipole. When &limethods are considered it can be that
the swLORETA synchronization tomography performed bdtieall the tested conditions.

5.4.3 Discussion and Conclusions

In this section, it was demonstrated that a further imprasenof the swLORETA source localization
algorithm can be attained by incorporating additional infation about the reciprocal functional inter-
actions established between different brain regions duriantal tasks. It was empirically demonstrated
that both swLORETA synchronization tomography and swLORE®@herence tomography were supe-
rior to sSwLORETA. This can be explained but the fact that imeemethods do not estimate the dipoles
strenght accurate but, in contrast, preserve its tempgrardics. Because swLORETA coherence and
in particular sSwLORETA phase synchronization tomograpkg this information a more robust local-
ization of the underlaying sources is attained.

Additionally, it was seen that swLORETA synchronizatiomtugraphy performs better than the
coherence based tomography. This result is explained byattiethat the synchronization analysis
specifically detects the adjustment of the oscillators ebathereby taking into account linear and non-
linear features of the signals (Tass et al., 1998; Rosenbiuah, 2001). In contrast, standard coherence
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Figure 5.5: Localization error of sSwLORETA, swLORETA symchization and swLORETA coherence
tomography methods, using a simulated phantom experiniéme. different eccentricity values corre-

spond tad5 dipoles with fixed positions and tangential orientations.0Adz sinusoidal waveform lasting
30s was used to generate the MEG signals.

analysis detects only linear correlations between theassg T his is very important because as MEG and
EEG signals are mixtures, i.e. superpositions of magnetatextrical fields originating from different
cerebral sources, coherence cannot distinguish betwakplrase locking and two mixed signals mutu-
ally containing parts of the other (Tass et al., 1998; Rolsgnlet al., 2001). Accordingly, when applied
to EEG/MEG signals, standard linear coherence leads totekpger-estimation of synchronization

processes as compared to phase synchronization analysier{®um et al., 2001). As seen here, this
limitation also applies to PCD analysis.
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Conclusions and outlook

Art is never finished, only abandoned.

Leonardo da Vinci

Several decades have passed since the first attempts todindderlying sources of the EEG/MEG
signals. Despite the amount of research devoted to thidgsiroland the developments achieved, the
search for better inverse solution methods continues. Tain measons keep alive this enterprise: the
complicated physics nature of the inverse problem and tpeapance of new challenges posed by the
advancements in EEG/MEG technology. Think, for example,dbntribution that an accurate inverse
method could make to the brain computer interface technidgitgs technique aims to guide in real
time an external device according to the subject’s ongonainkactivity recorded on the scalp. It goes
without saying that the identification of the anatomicalisture active at a given time can be a trustable
indicator of what the subject which to do with the externalide (Lebedev and Nicolelis, 2006).

In this thesis, a new inverse method named swLORETA has besemted. This method, which
is a generalization of sSLORETA, uses a singular value decsitipn based lead field weighting to
compensate the tendency of the linear inverse procedurgsneral, to reconstruct the sources close
to the location of the sensors and to decrease the sensitivihe solution to the presence of noise in
the data. It was shown that the new technique improved thedeoaphic properties of the SLORETA
and hence the MN under all simulated condition. Moreoverenvthe algorithm was tested under a
real experimental situation it was able to reconstruct tigeudying sources in accordance with previous
studies.

Although this was a good step forward, it does not fully ekglee whole range of valuable informa-
tion contained in the EEG. As neurons oscillates at diffefiemguencies over time it is also important to
study the brain regions activated in the time-frequencgsp@onsequently, swLORETA was extended
by combining the time series it provides with the Hilbernstorm.

Information about the brain functional connectivity pattestablished during a given cognitive task
was also computed using the swLORETA algorithm. To this evalindexes were employed: phase
synchronization and coherence. It was demonstrated tkiagtanto account the dynamics of the signal
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improved the identification of the different members of teemnal network especially when the phase
synchronization index was used.

Finally, using the linear properties of SwWLORETA in combiina with the time-frequency decom-
position it was possible to optimize the algorithm to alld® use in real time. Thus, the amount of
computations were decreased frem3000 (typical number of points in the source spacekria300
(number of sensors).

Several lines of development are still waiting ahead. FamgXe, the information derived from other
imaging techniques like fMRI or PET measures can be also wskdther improve the performance of
swWLORETA. Additionally, anatomical connectivity inform@n can be obtained using diffusion tensor
image procedure (Behrens et al., 2003; Kaden et al., 20083%. ifformation could be used in addition
to the phase synchronization tomography method develapeldapter (5) to take into account not only
the functional links established between regions but dleo aictual anatomical connections.



A

Tikhonov regularization

The minimization ansatz, in finding a unique solution by aéraff between fidelity to the data and
fulfillment to the model, is widely used Tikhonov regulatioa. The degree of the trade off is tuned via
the regularization parameter For the minimum it follows:

S CIERPYCES SRCES S IR

BiTj+Ad"d — NTK'd — Ad"Kj + \TKTKj) = 0

3ng 3ng
5— (ZJka) —)\— ij K'd],

75,

3ng 3ng 3ng
—Aazdk (ZKlil) +>\— (ZJk (Z KTK]MJ'J)) =0
! k=1

k=1
3ng s
B Girdk + o) = A [K'd], =AY Ky
k=1 k=1
3ng
A Z (5ik [KTK] g dt Adiy [KTK] kzjk) =0
k=1
3ng 3ng
23 Z Siejr — 2X [K'd], +2A Z K'K]. jr = 0
k=1 k=1

2 (a3, +K'K)j = 2K'd.

wherea = /). From the last equation we get that the PGran be obtained from the EEG/MEG
data vectoin in the following way:

i) = (KTK + aly,,) K'd. (A.1)
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From equation (A.1) we see that in order to fjnde have to invert the matrix

KK + alj,,,

which is of size3n, x 3n,. From chapter (3) we know that, is in order 0f3000 thus making this
matrix large for performing an efficient matrix inversiom drder to find an efficient solution to this
equation we appeal to the following matrix identity:

(KK + ol3,,) K” = K" (KK” + oI,,) . (A.2)

This identity can be proved as follow:

K (KK” +al,,) = K'KK” +aK"
= (K"K + als,, ) KT,
this gives

K" = (K"K + als,,) K” (KK” +al,,,) "'

and finally

(K"K +1,,) ' K" =K (KK” +al,,) . (A.3)
Given equation (A.3) we can rewrite equation (A.1) as:

j(@) =K" (KK” +al,,) "' d.
in this equation the matrix we have to invert is of orderx ng with ng &~ 300. Moreover, this
equation can be solved using the SVD decomposition whiclasedh on the following linear algebra
theorem: AnyM x N matrix A whose number of row8/ is greater than or equal to its number of
columnsN, can be written as the product of &d x N column-orthogonal matriU, and N x N
diagonal matrixS with positive or zero elements (tlsngular value} and the transpose of @i x N
orthogonal matrixV:

A =USV

with

M
> UlUin =0k 1<kn<N (A.4)
i=1
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N
ZV;‘QVm =0kn 1<kn<N (A.5)
=1

The SVD decomposition can also be carried out whién< N. In this case the singular values
S;forj =M+ 1,...,N are all zero, and the corresponding columndJore also zero. Equations
(A.4) and (A.5) then holds only fdt, n» < M. The SVD decomposition can always be performed and its
unique except to (i) making the same permutation of the co&iafU, elements o8, and columns oV
(or rows of V1), or (i) forming linear combinations of any columns BfandV whose corresponding
elements o8 are exactly equal.

Using the SVD decomposition of the leadfield mafiixwe can find a computation efficient algo-
rithm to calculatgj(«) from equation (A.1). For that we can take:

K = Usv?’

so we have,

KK” = (usvT”)(usv’)"
= (usv?) (vsu?)
= usv’vsiu’
— uss’u” (A.6)

where we have taken into account equation (A.5). Using émuéf.6) we have:

(KK” +ol,)"" = (USSTUT +al,,)”"
— U(ss’+a1,) " UT

we have made used of the following matrix inversion property

(AB)' =B 'AL

Finally multiplying by K™ = VSTU” we get:

K" (KK” +al,) = VSTUTU(SST +als,,) " UT

VS—TUT
(SST + OéIgng)
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From this equation we see that

j(0) =V s Uuld
a)=V-————
. (SST +aly, ) O
additionally,
ji=> Tid,,
j=1
where

3ng ST .
T = Vit | ea———U
j > Vi ( (SST + aly,, ) ) .

k=1

S (5 |
—1 . (SST + (XIgng) Kl J

Sinces is an square diagonal matrix we get:

[ st } St
(SST +al) |, (Siow+a)’
whereS;, is the k diagonal element &.

Taking this into account we can rewritg; as:

S ( st ) r
’ p (S2+a)) M

From this equation we can see tBy; is well defined even fok > n, where the eigenvalues abe
or close to0 (null space ofK). It is for this eigenvalues where we observe the numeriglavance of
the regularization parametar)(which reduces the weighting for the data which are assetiaith the
small singular values. Since the smallest singular valoésmly enhance the data (we multiply a value
which tend to infinite), it also amplifies the noise in it. Téfare, depending on the level of noise in
the data, we need different amounts of protection agaieshdlise-amplifying effects of reconstruction
using the small singular values, which essentialy consisipplying a large regularization.
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Analytic Signal and Hilbert Transform

If f(¢) is a real function that can be represented by an inverse éfowensform then we have the
following relationship in the time domain:

s(t) = sT(t) (B.1)

but
0 =5z [ Swetd ©2)
S = o . w)e w .
taking the complex conjugate of equation () we get:
sT(t) = L /OO S(w)e™tdw ' L /00 ST (w)e ™t dw
27 J_ o 2 J_

replacingw by —w’ we get:

sT(t) = i/ ST (—w')e™  dw (B.3)

2 J_ o

we have made use of:

/a " fayde = — /b " f)da.

From equality (B.1) and comparing equations (B.2) and (B/&)btain the following relation:

S(w) = 5T (w)
or

S(—w) = ST (w) (B.4)
and we see thaft for negative frequencies can be expressed byor positives ones in the case of a
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real value function. This mean that the positive frequem®cta is sufficient to represent a real signal.
Taking into account the redundancy of the negative frequéequation (B.4)) we can define the

following function:
—2—/ S(w)e™tdw,

but

therefore

= 2—/ dw/ et it 44 qqy.

/ e dw = 7o (x) + -
0

Using the fact that

X
we have
* iw(t—t/)d — 76 t_tl _
/0 e w = 70( ) -
Hence
2(t) = i/s(t’) ot —t') + ! dt’
2 t—t
or

2(t) = s(t) + i / " (_ t)ldt/

The second part is the Hilbert transform of the sigs(@). From this equation is easy to deduce the
linearity of the analytic signal discussed in section #).2s follow:

Given the functionf(t) asc; f1(t) + caf2(t) where the Hilbert transform of; () and f»(t) exist
then:

Hf(t) = H(caifi(t) +cafolt))
- i/(clfl()+c2f2(t))dt/

t—t

= /fl at + et [ 220 4y
r ) t—v

= L Hfi(t) + coH fo(t).
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